
Automated Assume-Guarantee Reasoning
through Implicit Learning?

Yu-Fang Chen1, Edmund M. Clarke2, Azadeh Farzan3, Ming-Hsien Tsai4,
Yih-Kuen Tsay4, and Bow-Yaw Wang1,5

1 Academia Sinica, Taiwan
2 Carnegie Mellon University, USA

3 University of Toronto, Canada
4 National Taiwan University, Taiwan

5 INRIA, France and Tsinghua University, China

Abstract. We propose a purely implicit solution to the contextual as-
sumption generation problem in assume-guarantee reasoning. Instead of
improving the L∗ algorithm — a learning algorithm for finite automata,
our algorithm computes implicit representations of contextual assump-
tions by the CDNF algorithm — a learning algorithm for Boolean func-
tions. We report three parametrized test cases where our solution out-
performs the monolithic interpolation-based Model Checking algorithm.

1 Introduction

Assume-guarantee reasoning is a divide-and-conquer technique to alleviate the
state explosion problem in formal verification. Let M be a transition system and
π a predicate on states of M . We write M |= π to denote that all reachable
states of M satisfy the state predicate π. The composition of transition systems
M and M ′ is denoted by M‖M ′. Moreover, M �M ′ means that M is simulated
by M ′. Consider the following assume-guarantee reasoning rule:

M0‖A |= π M1 � A
M0‖M1 |= π

In order to prove that the composition of M0 and M1 satisfies π, it suffices to find
a transition system A such that the composition of M0 and A satisfies the state
? This research was sponsored by the GSRC under contract no. 1041377 (Prince-

ton University), National Science Foundation under contracts no. CCF0429120,
no. CNS0926181, no. CCF0541245, and no. CNS0931985, Semiconductor Research
Corporation under contract no. 2005TJ1366, General Motors under contract no. GM-
CMUCRLNV301, Air Force (Vanderbilt University) under contract no. 18727S3,
the Office of Naval Research under award no. N000141010188, the National Sci-
ence Council of Taiwan projects no. NSC97-2221-E-001-003-MY3, no. NSC97-2221-
E-001-006-MY3, no. NSC97-2221-E-002-074-MY3, no. NSC99-2218-E-001-002-MY3,
and iCAST under contract no. 1010717, Natural Sciences and Engineering Research
Council of Canada NSERC Discovery Award, the FORMES Project within LIAMA
Consortium, and the French ANR project SIVES ANR-08-BLAN-0326-01.

predicate π, and that M1 is simulated by A. Informally, the transition system A
captures necessary assumptions about the context of M0 to guarantee π. We thus
call A a contextual assumption. The contextual assumption generation problem
is to compute a contextual assumption in an assume-guarantee reasoning rule.

We address the contextual assumption generation problem in this paper.
In [11], the problem is formulated as an automata learning problem. The au-
thors apply the L∗ algorithm [1] to generate a deterministic finite automaton
as the contextual assumption. In contrast to previous works [14, 13, 7, 5, 23, 20,
11], our solution does not rely on the L∗ algorithm. Instead, we use the CDNF
algorithm [4] to generate Boolean functions that implicitly represent contex-
tual assumptions in assume-guarantee reasoning. One can think of the relation
between our approach and L∗-based techniques as very similar to the relation
between implicit and explicit Model Checking. Succinct implicit representations
give our algorithm advantages in generating contextual assumptions of a mod-
erate size. They hence make our solution more scalable and applicable.

Our new technique directly computes implicit representations of contextual
assumptions by applying the CDNF algorithm [4]. The CDNF algorithm is an
exact learning algorithm for arbitrary Boolean functions. It assumes an active
learning model similar to that in the L∗ algorithm [1]. In its learning model, a
membership query asks a teacher if a valuation satisfies the target Boolean func-
tion. An equivalence query asks if a conjecture is equivalent to the target Boolean
function. If not, the teacher should give a counterexample so that the learning
algorithm can refine the conjecture. The CDNF algorithm is a feasible learning
algorithm. It infers any target Boolean function with a polynomial number of
queries in the size of the target function and the number of variables [4].

In [11], all components and the contextual assumption were modeled as finite
automata. The contextual assumption generation problem was solved by learn-
ing a deterministic finite automaton as the contextual assumption. In contrast,
we view the problem as a Boolean function learning problem. In our setting,
transition systems and hence contextual assumptions are implicitly represented
by Boolean functions. The simulation relation M1 � A in the assume-guarantee
reasoning rule gives a simple characterization of the Boolean functions represent-
ing the transition system M1 and a contextual assumption A. We thus exploit the
information to resolve membership queries. Moreover, the premise M0‖A |= π in
the assume-guarantee reasoning rule further characterizes the Boolean functions
representing the transition system M0 and the contextual assumption A. This
allows us to resolve equivalence queries in our algorithm.

It is important to note that our algorithm is not an optimization of the
explicit L∗ algorithm in any way. Instead, our algorithm simply generates con-
textual assumptions implicitly by employing an exact learning algorithm for
Boolean functions. The most significant advantage of our solution is its scalabil-
ity. This can be observed in two aspects. Recall that the L∗ algorithm requires
a polynomial number of queries in the number of states of the target finite au-
tomaton [1, 21]. The CDNF algorithm, on the other hand, requires a polynomial
number of queries in the number of Boolean variables of the target Boolean

2

function [4]. Since implicit representations obtained in our algorithm can be
exponentially more succinct than explicit ones obtained in automata-theoretic
algorithms, our solution can be exponentially better than explicit algorithms.

Comparing the qualities of generated contextual assumptions, our solution is
also favorable. Most existing automata-theoretic algorithms are based on vari-
ants of the L∗ algorithm [1, 21], they inherently generate deterministic finite
automata as contextual assumptions. In contrast, contextual assumptions gen-
erated by our algorithm are represented by general Boolean functions. In general,
they are nondeterministic finite automata in an economic representation. Since
nondeterministic finite automata can be exponentially more succinct than de-
terministic ones, our algorithm can generate contextual assumptions with expo-
nentially less states than those generated by L∗-based algorithms. Even though
implicit representations have been used in optimizing the L∗ algorithm [23, 13,
20], our new implicit solution can still outperform these optimizations.

In [17], the CDNF algorithm is used to generate propositional loop invariants
in sequential programs. The idea of using the L∗ algorithm to learn contextual
assumptions for assume-guarantee reasoning was first proposed in [11]. Follow-
ing this work, there have been results for other assume-guarantee rules [2, 20],
symbolic implementations [20], various optimization techniques [6, 23, 15, 7], per-
formance evaluation [10], and extension to support liveness properties [12]. The
common theme of these works is that they are all based on the L∗ learning al-
gorithm and hence always generate deterministic finite automata as contextual
assumptions. To the best of our knowledge, the only exception is [3], which is
essentially a modified version of the counterexample guided abstraction refine-
ment technique [9]. Our solution is orthogonal to abstraction refinement; it can
apply abstraction refinement techniques implemented in Model Checkers.

The paper is organized as follows. Section 2 gives the background of our pre-
sentation. We review the exact learning algorithm CDNF for Boolean functions
in Section 3. It is followed by our solution to the contextual assumption gener-
ation problem (Section 4). Section 5 gives our preliminary experimental results.
Finally, we conclude in Section 6.

2 Preliminaries

B = {F,T} is the Boolean domain. Let x be a set of Boolean variables and |x|
the size of x. A Boolean function θ(x) over x is a function from B|x| to B. We
also define x′ to be the set of Boolean variables {x′ : x ∈ x}.

A valuation ν : x → B over x is a function from Boolean variables to truth
values. Let φ(x) be a Boolean function over x and ν a valuation over x. If y ⊆ x
is a set of Boolean variables, ν↓y is the restriction of ν on y. That is, ν↓y: y→ B
and ν↓y (y) = ν(y) for all y ∈ y. We write φ[ν] for the result of evaluating φ
by replacing each x ∈ x with ν(x). Moreover, let ψ(x,x′) be a Boolean function
over x and x′. If ν and ν′ are valuations over x, we write ψ[ν, ν′] for the result of
evaluating ψ by replacing each x ∈ x with ν(x) and each x′ ∈ x′ with ν′(x). For

3

example, assume ν(x) = F and ν′(x) = T. If φ(x) = ¬x, φ[ν] = T and φ[ν′] = F.
If ψ(x, x′) = ¬x ∧ x′, ψ[ν, ν′] = T and ψ[ν′, ν] = F.

A transition system M = (x, ι(x), τ(x,x′)) consists of its state variables
x, its initial predicate ι(x), and its transition relation τ(x,x′). A trace of M
α = ν0ν1 · · · νt is a finite sequence of valuations where νi is a valuation over x,
such that ι[ν0] = T and τ [νi, νi+1] = T for 0 ≤ i < t. Define Trace(M) = {α :
α is a trace of M}. If α = ν0ν1 · · · νt is a finite sequence of valuations over x
and y ⊆ x, α↓y= ν0↓y ν1↓y · · · νt↓y is the restriction of α on y.

Let M = (x, ιM (x), τM (x,x′)) be a transition system. A state predicate π(x)
is a Boolean function over x. We say M satisfies π (denoted by M |= π) if for any
α = ν0ν1 · · · νt ∈ Trace(M), we have π[νi] = T for 0 ≤ i ≤ t. Given a transition
system M and a state predicate π, the invariant checking problem is to decide
whether M satisfies π. Model Checking is an automatic technique to solve the
invariant checking problem. When deciding whether M |= π, a Model Checking
algorithm returns a witness if M does not satisfy π. A witness to M 6|= π is a
trace ν0ν1 · · · νt of M such that π(νi) = T for 0 ≤ i < t but π(νt) = F.

Let N = (x, ιN (x), τN (x,x′)) be a transition system. We say M is simulated
by N or N simulates M (denoted by M � N) if ∀x.ιM (x) =⇒ ιN (x) and
∀xx′.τM (x,x′) =⇒ τN (x,x′) hold. In words, M is simulated by N if the initial
condition of M is more restrictive than that of N and every transition allowed
in M is also allowed in N . Clearly, if M � N , then Trace(M) ⊆ Trace(N).

Let xi be sets of Boolean variables for i = 0, 1 (xi’s are not necessarily dis-
joint). Consider Mi = (xi, ιi(xi), τi(xi,x′i)) for i = 0, 1. The composition of M0

and M1 is the transition system M0‖M1 = (x0 ∪ x1, ι0(x0)∧ ι1(x1), τ0(x0,x′0)∧
τ1(x1,x′1)). Note that for any finite sequence of valuations α over x0 ∪ x1,
α ∈ Trace(M0‖M1) if and only if α↓x0∈ Trace(M0) and α↓x1∈ Trace(M1).

An assume-guarantee reasoning rule is of the form Θ0 · · ·Θm
∆

where Θ0, . . . ,

Θm are its premises and ∆ its conclusion. An assume-guarantee reasoning rule
is sound if its conclusion holds when its premises are fulfilled. A rule is invertible
if its premises can be fulfilled when its conclusion holds. We use the following
assume-guarantee reasoning rule throughout the paper:

Lemma 1. Let Mi = (xi, ιi(xi), τi(xi,x′i)) be transition systems for i = 0, 1,
and π a state predicate over x0 ∪ x1. The following rule is sound and invertible:

M0‖A |= π M1 � A
M0‖M1 |= π

where A = (x1, ιA(x1), τA(x1,x′1)) is a transition system.

Let Mi = (xi, ιi(xi), τi(xi,x′i)) be transition systems for i = 0, 1 and π a state
predicate over x0∪x1, a transition system A = (x1, ιA(x1), τA(x1,x′1)) such that
M0‖A |= π and M1 � A is called a contextual assumption of M0.

3 The CDNF Algorithm

For a fixed set of Boolean variables x and a Boolean function λ(x) over x, an
exact learning algorithm for Boolean functions computes a representation of λ(x)

4

in a finite number of steps. The CDNF algorithm is an exact learning algorithm
for Boolean functions [4]. Like the L∗ algorithm [1], the CDNF algorithm uses
an active learning model. In the model, it is assumed that a teacher, who knows
the target Boolean formula λ(x), provides the learning algorithm with answers
to the following types of queries:

– Membership query MEM (ν) for the target λ(x), where ν is a valuation over
x. If λ[ν] = T, the teacher answers YES ; and NO , otherwise.

– Equivalence query EQ(θ) for the target λ(x), where θ(x) is a Boolean func-
tion over x. If the conjecture θ(x) is equivalent to the target Boolean function
λ(x), the teacher answers YES . Otherwise, the teacher provides a valuation
ν over x where θ[ν] 6= λ[ν]. The valuation ν serves as a counterexample to
the equivalence query EQ(θ).

Consider the following examples. Assume λ(x, y) = (x ∧ ¬y) ∨ (¬x ∧ y) is the
target Boolean function over x and y. The teacher answers NO to the query
MEM (ν) where ν(x) = ν(y) = F (denoted by ν(xy) = FF), since λ(F,F) = F.
For a different valuation ν(xy) = TF, the teacher answers YES . As an example
of equivalence queries, consider EQ(x ∨ y). The teacher provides the valuation
ν(xy) = TT as a counterexample, since T ∨ T = T 6= F = λ(T,T). For another
equivalence query EQ((x ∨ ¬y) ∧ (¬x ∨ y)), the teacher answers YES .

Let λ(x) be a Boolean function over x, |λ(x)|DNF and |λ(x)|CNF denote the
sizes of λ(x) in minimal disjunctive and conjunctive normal forms respectively.
Under the aforementioned active learning model, the CDNF algorithm computes
a representation for any target Boolean function λ(x) with a polynomial number
of queries in |λ(x)|DNF , |λ(x)|CNF , and |x| [4].

4 Learning a Contextual Assumption

Recall the following assume-guarantee reasoning rule (Lemma 1):

M0‖A |= π M1 � A
M0‖M1 |= π

Our goal is to generate a contextual assumption A = (x1, ιA(x1), τA(x1,x′1))
such that the premises M0‖A |= π and M1 � A hold. The contextual assumption
consists of two parts: ιA(x1) and τA(x1,x′1) which are Boolean functions over
x1 and x1 ∪ x′1 respectively. We naturally use the CDNF algorithm to learn
both Boolean functions. Precisely, two instances of the CDNF algorithm are
deployed: one for the initial predicate ιA(x1), and the other for the transition
relation τA(x1,x′1). Remember that the CDNF algorithm relies on a teacher,
who knows the target Boolean function already, to answer queries from the
learning algorithm. In this case, the target functions are unknown. We use the
two premises of the assume-guarantee reasoning rule (Lemma 1) to simulate the
role of a teacher. We explain in detail how this is done for the rest of Section 4.

There are four different types of queries (from the two instances of the CDNF
algorithm) that need to be handled:

5

– the membership query MEM (µ) for the target ιA(x1);
– the membership query MEM (µ, µ′) for the target τA(x1,x′1);
– the equivalence query EQ(ι) for the target ιA(x1); and
– the equivalence query EQ(τ) for the target τA(x1,x′1).

In order to resolve membership queries, we exploit the fact that any contextual
assumption must simulate M1. The membership query MEM (µ) for the target
ιA(x1) is resolved by checking if µ satisfies ι1(x1). If so, µ must also satisfy ιA(x1)
becauseM1 is simulated by any contextual assumptionA. The membership query
MEM (µ, µ′) is resolved similarly.

For equivalence queries, we answer YES when a contextual assumption is
found. Note that both conjectures ι(x1) and τ(x1,x′1) are needed to decide if
they represent a contextual assumption. The two types of equivalence queries
EQ(ι) and EQ(τ) hence cannot be resolved independently. In contrast to mem-
bership query resolution algorithms, there is only one equivalence query resolu-
tion algorithm for both types of equivalence queries.

EQ(ι)

YES ,NO

MEM (µ)

YES , ceι

YES ,NO

EQ(τ)

YES , ceτ

equivalence

resolution

IsEquivalent(ι, τ)

Algorithm

CDNF ιA

membership

resolution

IsMember ιA(µ)

membership

resolution

IsMember τA(µ, µ′)

MEM (µ, µ′)

CDNF τA

Algorithm

Fig. 1: Structure of Contextual Assumption Generator.

Figure 1 shows the interaction between components in our contextual as-
sumption generation algorithm. In the figure, two instances of the CDNF algo-
rithm are shown on the sides. The instance CDNF ιA is intended to compute the
initial predicate ιA(x1) of an unknown contextual assumption A; the instance
CDNF τA

is to compute the transition relation τA(x1,x′1) of A. The dashed box
in the middle denotes the teachers. We design three query resolution algorithms
to simulate the teachers for the two instances of the CDNF algorithm.

The membership query resolution algorithm IsMember ιA(µ) resolves the mem-
bership query MEM (µ) for the target ιA(x1). It receives queries and sends an-
swers to the instance CDNF ιA . Similarly, the membership query resolution algo-
rithm IsMemberτA

(µ, µ′) communicates with the instance CDNF τA
solely. The

equivalence query resolution algorithm IsEquivalent(ι, τ), however, needs both
conjectures from CDNF ιA and CDNF τA

. It hence interacts with both instances.

6

4.1 Resolving Membership Queries

Let µ be a valuation over x1. The membership query MEM (µ) asks if µ is a
satisfying valuation for the initial predicate ιA(x1) of an unknown contextual
assumption A. We exploit the simulation relation in the assume-guarantee rea-
soning rule to resolve membership queries.

Input: MEM (µ) : a membership query for the target ιA(x1)
Output: YES or NO
if ι1[µ] = T then return YES else return NO ;

(a) IsMember ιA(µ)

Input: MEM (µ, µ′) : a membership query for the target τA(x1,x
′
1)

Output: YES or NO
if τ1[µ, µ′] = T then return YES else return NO ;

(b) IsMemberτA(µ, µ′)

Algorithm 1: Membership Query Resolution Algorithms

Algorithm 1a shows the membership query resolution algorithm for MEM (µ).
In order to understand the algorithm, recall the premise M1 � A in the assume-
guarantee reasoning rule (Lemma 1). The initial predicate ιA(x1) for any contex-
tual assumption A must satisfy ∀x1.ι1(x1) =⇒ ιA(x1). On the given valuation
µ over x1, we hence check if ι1[µ] = T. If so, we have ιA[µ] = T by M1 � A
and return YES . Otherwise, we simply return NO for the sake of termination.
Observe that the answers to membership queries for the target ιA(x1) are con-
sistent with ι1(x1). Algorithm 1a effectively targets the initial predicate ι1(x1)
of M1. Subsequently, CDNF ιA can infer ι1(x1) of M1 as the initial predicate
ιA(x1) of an unknown contextual assumption eventually. Of course, one expects
that an initial predicate different from ι1(x1) will be learned. Our experiments
show that this is indeed the case in practice.

Resolving membership queries MEM (µ, µ′) for the transition relation τA(x1,x′1)
of an unknown contextual assumption is almost identical (Algorithm 1b). Let
µ and µ′ be valuations over x1 and x′1 respectively. Similar to the case of ini-
tial predicate, the transition relation τA(x1,x′1) of any contextual assumption A
must satisfy ∀x1,x′1.τ1(x1,x′1) =⇒ τA(x1,x′1) due to M1 � A. If τ1[µ, µ′] = T,
τA[µ, µ′] = T and hence our membership resolution algorithm returns YES .
Otherwise, Algorithm 1b returns NO . As in the membership query resolution
algorithm for the initial predicate, these answers make sure that CDNF τA

can
infer the transition relation τ1(x1,x′1) of M1 and terminate eventually.

7

4.2 Resolving Equivalence Queries

Our equivalence query resolution algorithm answers two different types of equiv-
alence queries from the two instances of the CDNF algorithm. The equivalence
query EQ(ι) from CDNF ιA asks if the Boolean function ι(x1) represents the
initial predicate of an unknown contextual assumption; EQ(τ) from CDNF τA

asks if the Boolean function τ(x1,x′1) represents the transition relation of an
unknown contextual assumption.

Let ι(x1) and τ(x1,x′1) be conjectures. Consider the transition system C =
(x1, ι(x1), τ(x1,x′1)). Our equivalence query resolution algorithm first checks if
M1 is simulated by C. If M1 is not simulated by C, the equivalence query
resolution algorithm returns a counterexample to either CDNF ιA or CDNF τA

.
Otherwise, it continues to check if C is in fact a contextual assumption by
verifying M0‖C |= π with a Model Checking algorithm. If the composition of M0

and C satisfies π, the equivalence query resolution algorithm returns YES . We
conclude that M0‖M1 satisfies π. If the composition of M0 and C does not satisfy
π, the equivalence query resolution algorithm examines the witness returned by
the Model Checking algorithm. If the witness is also a witness to M0‖M1 6|= π,
we conclude that M0‖M1 does not satisfy π. Otherwise, the equivalence query
resolution algorithm returns a counterexample to either CDNF ιA or CDNF τA

.

Input: EQ(ι) : an equivalence query for the target ιA(x1); EQ(τ) : an
equivalence query for the target τA(x1,x

′
1)

Output: YES , a counterexample to EQ(ι), or a counterexample to EQ(τ)
let C be the transition system (x1, ι(x1), τ(x1,x

′
1));

if ι1(x1) ∧ ¬ι(x1) is satisfied by µ then
answer EQ(ι) with the counterexample µ;
receive another equivalence query EQ(ι′);
call IsEquivalent(ι′, τ);

if τ1(x1,x
′
1) ∧ ¬τ(x1,x

′
1) is satisfied by µµ′ then

answer EQ(τ) with the counterexample µµ′;
receive another equivalence query EQ(τ ′);
call IsEquivalent(ι, τ ′);

if M0‖C |= π then
answer EQ(ι) with YES ;
answer EQ(τ) with YES ;
report “M0‖M1 |= π”;

else
let α be a witness to M0‖C 6|= π;
call IsWitness(α);

end

Algorithm 2: IsEquivalent(ι, τ)

Algorithm 2 gives details of our equivalence query resolution algorithm. Let
C be the transition system (x1, ι(x1), τ(x1,x′1)). To verify that M1 is simulated
by C, the algorithm checks if ι1(x1) ∧ ¬ι(x1) is satisfiable. If ι1(x1) ∧ ¬ι(x1)

8

is satisfied by a valuation µ, then ∀x1.ι1(x1) =⇒ ι(x1) does not hold and
hence M1 6� C. The valuation µ is returned to CDNF ιA as a counterexam-
ple to the equivalence query EQ(ι). The equivalence query resolution algorithm
then restarts after it receives another conjecture from CDNF ιA . Similarly, if
τ1(x1,x′1) ∧ ¬τ(x1,x′1) is satisfied by µµ′, the valuation µµ′ is returned to
CDNF τA

as a counterexample to the equivalence query EQ(τ).
Now assume M1 � C. That is, the second premise of the assume-guarantee

reasoning rule is fulfilled. It remains to verify M0‖C |= π. The equivalence query
resolution algorithm uses Model Checking to verify if M0‖C |= π. If M0‖C |= π,
both premises of the assume-guarantee reasoning rule are fulfilled. The equiva-
lence resolution algorithm concludes M0‖M1 |= π. Otherwise, the Model Check-
ing algorithm returns a witness α to M0‖C 6|= π. Recall that M1 is simulated by
C and hence Trace(M1) ⊆ Trace(C). A witness α to M0‖C 6|= π is not necessary
a witness to M0‖M1 6|= π for α↓x1 may not be a trace of M1. We therefore check
whether α↓x1∈ Trace(M1) by the witness analysis algorithm.

Analyzing Witnesses Given a witness α to M0‖C 6|= π, the witness analysis
algorithm IsWitness(α) inspects α to see if α↓x1 is also a trace of M1. If so, α is
a witness to M0‖M1 6|= π. Otherwise, the transition system C deviates from M1

at some point in α↓x1 . The deviation is returned to either CDNF ιA or CDNF τA

as a counterexample to EQ(ι) or EQ(τ) respectively (Algorithm 3).

Input: α is a witness to M0‖C 6|= π
Output: a counterexample to EQ(ι), or a counterexample to EQ(τ)
let α↓x1= µ0µ1 · · ·µt;
if ι1[µ0] = F then

answer EQ(ι) with the counterexample µ0;
receive another equivalence query EQ(ι′);
call IsEquivalent(ι′, τ);

for i := 1 to t do
if τ1[µi−1, µi] = F then

answer EQ(τ) with the counterexample µi−1µi;
receive another equivalence query EQ(τ ′);
call IsEquivalent(ι, τ ′);

end
report “M0‖M1 6|= π is witnessed by α”;

Algorithm 3: IsWitness(α)

More concretely, let α↓x1= µ0µ1 · · ·µt be a sequence of valuations over x1.
Algorithm 3 verifies whether µ0 is an initial state of M1. If not, µ0 is a counterex-
ample to the equivalence query EQ(ι). Otherwise, the witness analysis algorithm
checks if each transition of α↓x1 on C is also a transition on M1. If the i-th tran-
sition of α↓x1 is not a transition on M1 (that is, τ1[µi−1, µi] = F), the valuation
µi−1µi is returned as a counterexample to the equivalence query EQ(τ). If a

9

counterexample to either EQ(ι) or EQ(τ) is found, the equivalence query reso-
lution algorithm waits for a new conjecture and then restarts. Otherwise, every
transition of α↓x1 is also a transition on M1, α is a witness to M0‖M1 6|= π.

4.3 Correctness

The correctness of our assumption generation algorithm is established in three
steps: proving soundness, completeness, and termination. Let Mi = (xi, ιi(xi),
τi(xi,x′i)) be transition systems for i = 0, 1 and π(x) a state predicate over
x = x0 ∪ x1. When the equivalence query resolution algorithm (Algorithm 2)
reports “M0‖M1 |= π,” it has verified that the composition of M0 and C satisfies
π, where C = (x1, ι(x1), τ(x1,x′1)) is the transition system corresponding to
the conjectures ι(x1) and τ(x1,x′1). Moreover, we have M0 � C because both
ι1(x1)∧¬ι(x1) and τ1(x1,x′1)∧¬τ(x1,x′1) are not satisfiable. By the soundness
of the assume-guarantee reasoning rule (Lemma 1), we have M0‖M1 |= π.

On the other hand, when the witness analysis algorithm (Algorithm 3) re-
ports “M0‖M1 6|= π is witnessed by α,” it has checked that α↓x1 is a trace of M1.
Moreover, α is a witness to M0‖C 6|= π and hence α↓x0 is a trace of M0. Since
α↓xi is a trace of Mi for i = 0, 1, α is a trace of M0‖M1 and thus a witness to
M0‖M1 6|= π as well. Our contextual assumption generation algorithm is sound.

Lemma 2 (soundness). Let Mi = (xi, ιi(xi), τi(xi,x′i)) be transition systems
for i = 0, 1, and π(x) a state predicate over x = x0 ∪ x1.

1. Let ι(x1) and τ(x1,x′1) be Boolean functions over x1 and x1∪x′1 respectively.
If IsEquivalent(ι, τ) reports “M0‖M1 |= π,” then M0‖M1 |= π;

2. Let ι(x1) and τ(x1,x′1) be Boolean functions over x1 and x1∪x′1 respectively.
If IsEquivalent(ι, τ) reports “M0‖M1 6|= π is witnessed by α,” then α is a
witness to M0‖M1 6|= π.

If M0‖M1 |= π, there is a transition system C = (x1, ι(x1), τ(x1,x′1)) such
that M0‖C |= π and M1 � C by the invertibility of the assume-guarantee rea-
soning rule. Thus ι1(x1)∧¬ι(x1) and τ1(x1,x′1)∧¬τ(x1,x′1) are not satisfiable.
Hence Algorithm 2 reports “M0‖M1 |= π.” On the other hand, assume α is a wit-
ness to M0‖M1 6|= π. Consider the transition system C = (x1, ιT(x1), τT(x1,x′1))
where ιT(x1) = T and τT(x1,x′1) = T. Clearly M1 � C and hence α is a wit-
ness to M0‖C 6|= π. Algorithm 3 reports “M0‖M1 6|= π is witnessed by α.” Our
contextual assumption generation algorithm is complete.

Lemma 3 (completeness). Let Mi = (xi, ιi(xi), τi(xi,x′i)) be transition sys-
tems for i = 0, 1, and π(x) a state predicate over x = x0 ∪ x1.

1. If M0‖M1 |= π, then IsEquivalent(ι, τ) reports “M0‖M1 |= π” for some
Boolean functions ι(x1) and τ(x1,x′1) over x1 and x1 ∪ x′1 respectively.

2. If α is a witness to M0‖M1 6|= π, then IsEquivalent(ι, τ) reports “M0‖M1 6|=
π is witnessed by α” for some Boolean functions ι(x1) and τ(x1,x′1) over x1

and x1 ∪ x′1 respectively.

10

It remains to show that our algorithm always reports “M0‖M1 |= π” or
“M0‖M1 6|= π is witnessed by α.” Observe that the answers given by our query
resolution algorithms are consistent with ι1(x1) and τ1(x1,x′1). Hence the in-
stance CDNF ιA will infer ι1(x1) after a polynomial number of queries. Similarly,
CDNF τA

will generate τ1(x1,x′1) eventually. At this point, the corresponding
transition system C = (x1, ι1(x1), τ1(x1,x′1)) = M1. The equivalence query res-
olution algorithm can always decide whether M0‖M1 |= π or not. Our contex-
tual assumption generation algorithm therefore always reports to the user after
a polynomial number of queries.

Lemma 4 (termination). Let Mi = (xi, ιi(xi), τi(xi,x′i)) be transition sys-
tems for i = 0, 1, and π(x) a state predicate over x = x0 ∪ x1. The contextual
assumption generation algorithm reports “M0‖M1 |= π” or “M0‖M1 6|= π is wit-
nessed by α” within a polynomial number of queries in |ι1(x1)|DNF , |ι1(x1)|CNF ,
|τ1(x1,x′1)|DNF , |τ1(x1,x′1)|CNF , and |x1|.

5 Experiments

We have implemented a prototype of our contextual assumption generation al-
gorithm in OCaml. Our current implementation uses the OCaml thread library
for synchronization purposes. Each instance of the CDNF algorithm (that is,
CDNF ιA or CDNF τA

) is executed in a separate thread, and the equivalence
query resolution algorithm is executed in a third thread.

We use MiniSat 2 (version 070721) in the membership query resolution al-
gorithms (Algorithm 1) and the simulation checking in the equivalence query
resolution algorithm (Algorithm 2). For monolithic Model Checking, we imple-
ment the interpolation-based algorithm in [19]. Interpolants are computed by
instrumenting MiniSat 2. The interpolation-based Model Checking algorithm
is also used in the equivalence query resolution algorithm (Algorithm 2).

We report three test cases in this section: the MSI cache coherence proto-
col [16], synchronous bus arbiters [18], and dining philosophers [22]. Each test
case has experiments parametrized by the number of nodes. Let M1, . . . ,Mn be
the nodes in an experiment with n nodes, and π a state predicate. We verify
M1‖ · · · ‖Mn |= π in an experiment with n nodes.

Assume-guarantee reasoning is compared with monolithic interpolation-based
Model Checking in each experiment. We explored several different partitions in
each experiment. More precisely, an experiment with n nodes is divided into
different partitions in n trials. In the i-th trial, we apply the following assume-
guarantee reasoning rule:

(M1‖ · · · ‖Mi−1‖Mi+1‖ · · ·Mn)‖A |= π Mi � A
(M1‖ · · · ‖Mi−1‖Mi+1‖ · · ·Mn)‖Mi |= π

Our contextual assumption algorithm generates a contextual assumption A to
verify M1‖ · · · ‖Mn |= π in each trial. Since we do not address the decomposition
problem in this paper, we choose the best result among the n trials and compare

11

it with monolithic Model Checking. All experimental results are collected on a
3.2GHz Intel Xeon server with 2GB memory running Linux 2.4.20.

MSI Cache Coherence Protocol In the MSI cache coherence protocol, a memory
is shared among n nodes. Each node has a cache. A bus connects the memory
and caches of the nodes. When a node accesses a memory cell, it reads the cell
from the bus and keeps a copy in its cache. Several copies of the same memory
cell can be kept in different nodes. The MSI protocol ensures data coherence by
keeping each cache in one of the three states: Modified, Shared, and Invalid [16].
Two properties are verified on the model derived from NuSMV [8]. We check
that the first two nodes cannot own the bus simultaneously. Then we verify that
any pair of nodes cannot own the bus at the same time. The former property
involves only two nodes and is easier to verify than the latter. Figure 2 shows
the results of experiments with 4 to 20 nodes.

nodes 4 5 6 7 8 9 10 11 12

monolithic (sec) 2.6 4.1 4.9 5.3 6.0 7.9 7.6 9.3 9.6

assume-guarantee (sec) 1.5 1.9 4.0 2.7 3.6 6.3 7.1 7.6 8.6

improvement (%) 42.3 53.6 18.3 49.0 40.0 20.2 6.5 18.2 10.4

nodes 13 14 15 16 17 18 19 20 avg

monolithic (sec) 7.7 6.6 6.8 14.7 8.4 8.7 18.2 18.5 8.6

assume-guarantee (sec) 9.0 7.7 6.5 11.3 8.3 8.4 8.9 9.6 6.6

improvement (%) -16.8 -16.6 4.4 23.1 1.1 3.4 51.0 48.1 20.9

(a) no contention for the first two nodes

nodes 4 5 6 7 8 9 10 11 12

monolithic 5s 15s 30s 42s 48s 1m43s 2m18s 5m8s 5m30s

assume-guarantee 3s 4s 30s 31s 31s 1m5s 42s 1m55s 1m33s

improvement (%) 40.0 73.3 0.0 26.1 35.4 36.8 69.5 62.6 71.8

nodes 13 14 15 16 17 18 19 20 avg

monolithic 2m37s 2m39s 3m14s 1m24s 6m38s 9m26s 9m26s 9m1s 3m36s

assume-guarantee 2m1s 2m20s 2m16s 1m28s 3m14s 4m5s 5m12s 9m11s 2m9s

improvement (%) 22.9 11.9 29.8 -4.7 51.2 56.7 44.8 -1.8 36.8

(b) no contention for all nodes

Fig. 2: Experimental Results for the MSI Protocol

In the figure, we show the verification time of the monolithic interpolation-
based Model Checking (monolithic), the verification time of assume-guarantee
reasoning (assume-guarantee), and the ratio of improvement (improvement). On
the first property, monolithic Model Checking takes more than 14 seconds in the
experiments with 16, 19, and 20 nodes. Assume-guarantee reasoning, on the other
hand, finishes all but one experiments in 10 seconds. Assume-guarantee reasoning
also performs significantly better than monolithic Model Checking on the second
property. The verification time for assume-guarantee reasoning increases more

12

stably than monolithic Model Checking (Figure 2b). The generated contextual
assumptions improve assume-guarantee reasoning by 50% in 5 experiments with
no less than 10 nodes. Given an experiment in this test case, one expects assume-
guarantee reasoning to outperform monolithic Model Checking by 20.9% and
36.8% on the two properties respectively.

Synchronous Bus Arbiters The synchronous bus arbiter is a bus arbitration
protocol for synchronous circuits [18]. In this protocol, n nodes are connected in
a ring. A token is passed around the nodes. A node can request and acknowledge
the token from the node next to it. The node having the token has the exclusive
right to access the bus. We generalize the model in NuSMV [8] and verify
two properties in this test case. We check that the first pair of nodes cannot
acknowledge the token simultaneously. Then we check that any pair of nodes
cannot acknowledge the token at the same time. Figure 3 shows the results.

nodes 4 5 6 7 8 9 10 11 12

monolithic (sec) 5.1 7.6 11.1 16.6 25.5 42.4 58.9 81.1 123.7

assume-guarantee (sec) 4.2 6.4 10.5 14.5 22.9 36.4 41.3 45.8 108.2

improvement (%) 17.6 15.7 5.4 12.6 10.1 14.1 29.8 43.5 12.6

nodes 13 14 15 16 17 18 19 20 avg

monolithic (sec) 159.3 130.6 314.0 81.3 423.1 548.8 698.3 900.0 213.3

assume-guarantee (sec) 139.6 115.0 188.9 61.1 374.4 463.3 531.9 568.2 160.7

improvement (%) 12.3 11.9 39.8 24.8 11.5 15.5 23.8 36.8 19.8

(a) no simultaneous acknowledgment for the first two nodes

nodes 4 5 6 7 8 9 10 11 12

monolithic 3s 5s 5s 10s 34s 34s 1m45s 1m51s 4m32s

assume-guarantee 3s 5s 5s 10s 34s 50s 1m44s 1m59s 4m33s

improvement (%) 0 0 0 0 0 -47.0 0.9 -7.2 -0.3

nodes 13 14 15 16 17 18 19 20 avg

monolithic 7m9s 10m54s 12m27s 21m2s 30m22s 24m3s 33m38s 45m29s 11m35s

assume-guarantee 7m4s 8m43s 8m43s 12m39s 17m57s 24m0s 33m22s 45m20s 9m43s

improvement (%) 1.1 20.0 29.9 39.8 40.8 0.2 0.7 0.3 4.6

(b) no simultaneous acknowledgment for any pair of nodes

Fig. 3: Experimental Results for Synchronous Bus Arbiters

For the first property, assume-guarantee reasoning outperforms monolithic
Model Checking consistently. Our algorithm computes a contextual assumption
that improves the verification time by 19.8% on average. Assume-guarantee rea-
soning decisively outperforms monolithic Model Checking for experiments with
14 to 17 nodes on the second property. Among the experiments in all three cases,
the experiments with 9 nodes is the only one where assume-guarantee reasoning
is outperformed by more than 20%. Subsequently, assume-guarantee reasoning
does not significantly improve the verification time on this property (4.6%).

13

Dining Philosophers The dining philosophers problem illustrates a simple re-
source sharing problem in concurrent programs. In dining philosophers, n nodes
are connected in a ring. Neighboring nodes share a resource. A node requires
both resources shared with its neighbors to enter its working mode [22]. In this
test case, we verify that a fixed pair of neighboring nodes cannot enter their
working modes simultaneously (Figure 4).6

nodes 4 5 6 7 8 9 10 11 12

monolithic (sec) 15.8 16.6 823.7 141.1 22.7 56.1 32.0 34.7 64.3

assume-guarantee (sec) 13.1 11.3 33.3 15.1 10.9 19.6 32.2 23.6 32.1

improvement (%) 17.0 21.0 95.9 89.2 51.9 65.0 -0.6 31.9 50.0

nodes 13 14 15 16 17 18 19 20 avg

monolithic (sec) 1109.9 60.6 46.1 32.7 1741.1 91.1 2406.7 63.7 397.5

assume-guarantee (sec) 29.5 34.3 36.8 28.9 58.8 66.4 39.5 67.5 32.5

improvement (%) 97.3 43.3 20.1 11.6 96.6 27.1 98.3 -5.9 47.6

Fig. 4: Experimental Results for Dining Philosophers

Our experiments show that the verification time of monolithic Model Check-
ing varies drastically in this case. Assume-guarantee reasoning, on the other
hand, performs more stably. Take the experiment with node 17 as an example.
Interpolation-based algorithm uses 180MB memory to compute 8 interpolants
to conclude that the property is verified. Assume-guarantee reasoning only uses
104MB memory and 7 interpolants to reach the same conclusion. With our
contextual assumption generation algorithm, assume-guarantee reasoning is ex-
pected to outperform monolithic Model Checking by 47.6% in this test case.

6 Conclusion

We introduced a new contextual assumption generation algorithm in this paper.
The new algorithm computes implicit representations and is more scalable than
explicit automata-theoretic algorithms. With the contextual assumptions gen-
erated by our algorithm, assume-guarantee reasoning can improve monolithic
interpolation-based Model Checking in three parametrized test cases.

The initial predicate and the transition relation of the generated contextual

assumption are different from those of a node. In all 1020 (= (2 + 2 + 1)×
20∑
n=4

n)

trials, each generated contextual assumptions has different initial predicates and
transition relations from those of its target node. Moreover, since the generated
contextual assumption simulates its target, it is in fact an abstraction of the

6 In fact, verifying that any neighboring nodes cannot enter the working mode in dining
philosophers takes so much time that both monolithic Model Checking and assume-
guarantee reasoning cannot finish in one hour in a setting with only 4 philosophers.

14

target node [9, 3]. Although our contextual assumption generation algorithm
can apply abstraction refinement techniques implemented in Model Checkers, it
will be interesting to compare these two techniques.

Targeting one node is not the best decomposition we have in our test cases. In
the MSI cache coherence protocol, targeting all nodes allows assume-guarantee
reasoning to verify the experiment with 36 nodes in 4 minutes whereas monolithic
Model Checking uses up all memory in 9 minutes and fails to verify. The challenge
of how to best decompose a problem still remains. In summary, our experiments
show that there is always a decomposition to make assume-guarantee reason-
ing outperform monolithic interpolation-based Model Checking in the three test
cases. Finding such a decomposition will certainly be an important future work.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2) (1987) 87–106

2. Barringer, H., Giannakopoulou, D., Păsăreanu, C.S.: Proof rules for automated
compositional verification through learning. In: Workshop on Specification and
Verification of Component-Based Systems. (2003) 14–21

3. Bobaru, M.G., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In Gupta, A., Malik, S., eds.:
CAV. Volume 5123 of LNCS., Springer (2008) 135–148

4. Bshouty, N.H.: Exact learning boolean function via the monotone theory. Infor-
mation and Computation 123(1) (1995) 146–153

5. Chaki, S., Clarke, E.M., Sinha, N., Thati, P.: Automated assume-guarantee rea-
soning for simulation conformance. In Etessami, K., Rajamani, S.K., eds.: CAV.
Volume 3576 of LNCS., Springer (2005) 534–547

6. Chaki, S., Strichman, O.: Optimized L∗-based assume-guarantee reasoning. In
Grumberg, O., Huth, M., eds.: TACAS. Volume 4424 of LNCS., Springer (2007)
276–291

7. Chen, Y.F., Farzan, A., Clarke, E.M., Tsay, Y.K., Wang, B.Y.: Learning minimal
separating DFA’s for compositional verification. In Kowalewski, S., Philippou, A.,
eds.: TACAS. Volume 5505 of LNCS., Springer (2009) 31–45

8. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new Symbolic
Model Verifier. In N. Halbwachs, D. Peled, eds.: CAV. Number 1633 in LNCS,
Springer (1999) 495–499

9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J ACM 50(5) (2003) 752–794

10. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: An evalua-
tion of automated assume-guarantee reasoning. ACM Trans. Software Engineering
Methodology 17(2) (2008)

11. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In Garavel, H., Hatcliff, J., eds.: TACAS. Volume 2619
of LNCS., Springer (2003) 331–346

12. Farzan, A., Chen, Y.F., Clarke, E.M., Tsay, Y.K., Wang, B.Y.: Extending au-
tomated compositional verification to the full class of omega-regular languages.
In Ramakrishnan, C., Rehof, J., eds.: TACAS. Volume 4963 of LNCS., Springer
(2008) 2–17

15

13. Gheorghiu, M., Giannakopoulou, D., Păsăreanu, C.S.: Refining interface alphabets
for compositional verification. In Grumberg, O., Huth, M., eds.: TACAS. Volume
4424 of LNCS., Springer (2007) 292–307

14. Giannakopoulou, D., Păsăreanu, C.S.: Special issue on learning techniques for
compositional reasoning. Formal Methods in System Design 32(3) (2008) 173–174

15. Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for compo-
sitional verification. Formal Methods in System Design 32(3) (2008) 285–301

16. Handy, J.: The Cache Memory Book. Academic Press (1998)
17. Jung, Y., Kong, S., Wang, B.Y., Yi, K.: Deriving invariants in propositional logic

by algorithmic learning, decision procedure, and predicate abstraction. In: VMCAI.
LNCS, Springer (2010)

18. McMillan, K.L.: The SMV system, symbolic model checking - an approach. Tech-
nical Report CMU-CS-92-131, Carnegie Mellon University (1992)

19. McMillan, K.L.: Interpolation and SAT-based model checking. In Jr., W.A.H.,
Somenzi, F., eds.: CAV. Volume 2725 of LNCS., Springer (2003) 1–13

20. Nam, W., Madhusudan, P., Alur, R.: Automatic symbolic compositional verifi-
cation by learning assumptions. Formal Methods in System Design 32(3) (2008)
207–234

21. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Information and Computation 103(2) (1993) 299–347

22. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts. 7th edn.
John Wiley & Sons, Inc. (2004)

23. Sinha, N., Clarke, E.M.: SAT-based compositional verification using lazy learning.
In Damm, W., Hermanns, H., eds.: CAV. Volume 4590 of LNCS., Springer (2007)
39–54

16

