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Abstract. We present version 1.0 of the Norn SMT solver for string constraints.
Norn is a solver for an expressive constraint language, including word equations,
length constraints, and regular membership queries. As a feature distinguishing
Norn from other SMT solvers, Norn is a decision procedure under the assumption
of a set of acyclicity conditions on word constraints, without any restrictions on
the use of regular membership.

1 Introduction

We introduce version 1.0 of the Norn SMT solver. Norn targets an expressive con-
straint language that includes word equations, length constraints, and regular member-
ship queries. Norn is based on the calculus introduced in [1]. This version adopts several
improvements on the original version, which allow it to efficiently establish or refute the
satisfiability of benchmarks that are out of the reach of existing state of the art solvers.

Norn aims to establish satisfiability of constraints written as Boolean combinations
of: (i) word equations such as equalities (a ·u= v ·b) or disequalities (a ·u 6= v ·b), where
a,b are letters and u,v are string variables denoting words of arbitrary lengths, (ii) length
constraints such as (|u|= |v|+1), where |u| refers to the length of the word denoted by
string variable u, and (iii) predicates representing membership in regular expressions,
e.g., u ∈ c · (a+b)∗. The analysis is not trivial as it needs to capture subtle interactions
between different types of predicates. The general decidability problem is still open.
We guarantee termination of our procedure in case the considered initial constraints are
acyclic. Acyclicity is a syntactic condition and it ensures that no variable appears more
than once in word (dis)equalies during the analysis. This defines a fragment that is rich
enough to capture all the practical examples we have encountered.

This version of the Norn solver follows a DPLL(T) architecture in order to turn the
calculus introduced in [1] into an effective proof procedure, and introduces optimiza-
tions that are key to its current efficiency: an improved approach to handling disequal-
ities, and a better strategy for splitting equalities compared to [1]. Norn accepts SMT-
LIB scripts as input, both in the format proposed in [2] and in the CVC4 dialect [5],
and can handle the combination of string constraints and linear integer arithmetic. In
addition, Norn contains a fixed-point engine for processing recursive programs in the
form of Horn constraints, which are expressed as SMT-LIB scripts with uninterpreted
predicates; the algorithm for solving such Horn constraints was introduced in [8, 1].



Related work. Over the last years, several SMT solvers for strings and related logics
have been introduced, starting from a number of tools that handled strings by means
of a translation to bit-vectors [4, 9, 10], thus assuming an a priori fixed upper bound on
the length of the possible words. More recently, DPLL(T)-based string solvers started
to enter the stage, lifting the restriction to strings of bounded length; this generation of
solvers includes Z3-str [12], CVC4 [5], and S3 [11], which are all compared to Norn
in Sect. 4. Most of those solvers are more restrictive than Norn in their support for
language constraints. In our experience, such restrictions are particularly problematic
for software model checking, where regular membership constraints offer an elegant
and powerful way of expressing and synthesising program invariants.

2 Logic and Calculus

Our constraint language includes word equations, membership queries in regular lan-
guages and length and arithmetic inequalities. We assume a finite alphabet Σ and write
Σ∗ to mean the set of finite words over Σ. We work with a set U of string variables
denoting words in Σ∗ and write Z for the set of integer numbers.

Constraints. We let variables u,v range over U . We write |u| to mean the length of the
word denoted by u, k to mean an integer in Z, c to mean a letter in Σ and w to mean a
word in Σ∗. Syntax of the constraints is given by:

φ ::= φ∧φ || ¬φ || ϕ constraints

ϕ ::= t = t || e≤ e || t ∈ R atomic predicates

t ::= ε || c || u || t · t terms

R ::= /0 || ε || c || w || R ·R || R +R || R ∩R || R C || R ∗ regular expressions

e ::= k || |t| || k ∗ e || e+ e integer expressions

A constraint is said to be linear if no variable appears more than once in any of its
(dis)equalities. We write wt to mean a word denoted by a term t. Semantics of the
constraints are straightforward [1].

Calculus. Given a constraint φ in our logic, we build a proof tree rooted at φ by re-
peatedly applying inference rules. We assume here, without loss of generality, that φ is
given in Disjunctive Normal Form. An inference rule is of the form:

B1 B2 ... Bn

A NAMEcond

NAME is the name of the rule, cond is a side condition on A for the application of
the rule, B1 B2 ... Bn are the premises, and A is the conclusion. Premises and conclu-
sions are constraints. Each application consumes a conclusion and produces premises.
In our calculus, if one of the produced premises turns out to be satisfiable, then φ is also
satisfiable. If none of the produced premises is satisfiable, then φ is unsatisfiable. The
inference rules are introduced in [1]. The repeated application of the rules starting from
a constraint φ is guaranteed to terminate (i.e., giving a decision procedure) in case φ is
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acyclic. Intuitively, acyclicity is a syntactic condition on the occurences of variables.
This condition ensures all (dis)equalities are linear, whether in φ or after the application
of some inference rule. We describe one rule. Other rules are introduced in [1].

Rule EQ-VAR eliminates variable u from the equality u · t1 = t2 ∧ φ. The equality
is satisfied if a word wu coincides with the prefix of a word wt2 . We assume u · t1 =
t2 ∧ φ is linear (see [1] for the general case). There are two sets of premises. The first
set corresponds to all the cases where wu coincides with a word wt3 where t2 is the
concatenation t3 · t4. The second set represents all situations where wt3 is a prefix of wu
which is a prefix of wt3·v with t2 being written as the concatenation t3 · v · t4.

{t1 = t4∧φ[u/t3] | t2 = t3 · t4} ∪
{t1 = v2 · t4∧φ[u/t3 · v1][v/v1 · v2] | t2 = t3 · v · t4}

u · t1 = t2∧φ
EQ-VAR

(u · t1 = t2 is linear)

3 A DPLL(T)-Style Proof Procedure for Strings

We follow the classical DPLL(T)-architecture [7] to turn the calculus from the previ-
ous section into an effective proof procedure. For a given (quantifier-free) formula in
our logic, first a Boolean skeleton is computed, abstracting every atom to a Boolean
variable. A SAT-solver is then used to check satisfiability of the Boolean skeleton, pro-
ducing (in the positive case) an implicant of the skeleton; the implicant is subsequently
translated back to a conjunction of string literals, and checked for satisfiability in the
string logic.

Our theory solver for checking conjunctions of string literals implements the rules of
Sect. 2 and Sect. 3.1, and handles all necessary splitting internally, i.e., without involv-
ing the SAT-solver. In our experience (which is consistent with observations in other
domains, e.g., [3]), this approach makes it easier to integrate splitting heuristics, and
often shows better performance in practice. In particular, our approach to split equal-
ities is model-based and exploits information extracted from arithmetic constraints in
order to prune the search space; the method is explained in Sect. 3.2.

Starting from a conjunction φ = (φ=∧φ6=∧φ∈∧φa) of literals (which is here split
into equalities φ=, disequalities φ 6=, membership constraints φ∈, and arithmetic con-
straints φa) the theory solver performs depth-first exploration until either a proof branch
is found that cannot be closed (and constitutes a model), or all branches have been
closed and discharged. If all branches could be closed, information about the string
literals involved in showing unsatisfiability is propagated back to the SAT-solver as a
blocking clause.

Rules are applied to φ = (φ=∧φ 6=∧φ∈∧φa) in the following order: (1) Satisfiability
of φa (in Presburger arithmetic) is checked, (2) Compound disequalities in φ6= are elim-
inated (Sect. 3.1), (3) Equalities in φ= with complex left-hand side are split (Sect. 3.2),
(4) Membership constraints in φ∈ with complex term are split, and (5) Satisfiability of
all remaining membership literals and arithmetic constraints is checked using automata
algorithms.
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3.1 Efficient Handling of Disequalities

To handle disequalities, we proceed differently than the method presented in [1]. For
each disequality of the form t 6= t ′, the rule DISEQ-SPLIT produces only two premises.
The first premise corresponds to the case where the words wt and wt ′ have different
length. The second case is when wt and wt ′ have the same length but contain different
letters c 6= c′ after a common prefix. Rather than constructing a premise for each pair of
different letters (as it is done in [1]), we introduce two special variables µ and µ′ (called
witness variables) such that the letters c and c′ correspond to the words denoted by µ and
µ′. Therefore, the length of these witness variables should be always equal to one and
this fact is added to the arithmetic constraints. Furthermore, we add a disequality µ 6= µ′

between these two witness variables in order to denote that c should be different from
c′. Assuming fresh variables u, v and v′, we rewrite t 6= t ′ as two equalities t = u ·µ ·v and
t ′ = u ·µ′ · v′. Finally, w.l.o.g, we restrict the inference rules such that witness variables
can only be substituted by other witness variables.

{|t| 6= |t ′|∧φ}∪
{|v|= |v′|∧ t = u ·µ · v∧ t ′ = u ·µ′ · v′∧|µ|= 1∧|µ′|= 1∧µ 6= µ′∧φ}

t 6= t ′∧φ
DISEQ-SPLIT

The new Rule REG-WITNESS can only be applied to a witness variable µ in a certain
case. For a formula φ, we define the condition Θ(φ,µ) which means that µ appears in φ

only in disequalities. The Rule REG-WITNESS replaces all the membership predicates
{µ ∈ Ri}n

i=1 with an arithmetic constraint Unicode(R1,R2, . . . ,Rn,µ). This constraint
uses a fresh variable µuni such that the set of possible lengths of the word denoted by
µuni represents the set of Unicode characters belonging to the intersection of all regular
expressions {Ri}n

i=1. In order to do so, we first construct a finite state automaton rep-
resenting the intersection of {Ri}n

i=1. Furthermore, we restrict our automaton to accept
only words of size exactly one (since µ is a witness variable). The obtained automaton
is then determined. Notice that the determined automaton has only transitions from the
initial state to the final one. Each transition of this automaton are labelled by a Uni-
code character interval as specified by the automata library [6] we are using. (Observe
that each letter in our alphabet is represented by its unique Unicode character.) Then,
for each transition labeled by an interval of the form {min, . . . ,max}, we associate an
arithmetic constraint of the form min≤ |µuni| ≤ max. Finally, our arithmetic constraint
Unicode(R1,R2, . . . ,Rn,µ) will be the disjunction of all associated arithmetic constraints
to all the transitions of the automaton. In the case that the intersection is empty, we set
Unicode(R1,R2, . . . ,Rn,µ) to ff.

Unicode(R1∩ . . .∩Rm,u)∧φ

µ ∈ R1∧ . . .∧u ∈ Rm∧φ
REG-WITNESS

(Θ(φ,µ))

Finally, the Rule DISEQ-WITNESS replaces a disequality of the form µ 6= µ′ by the
arithmetic constraint |µuni| 6= |µ′uni|.

|µuni| 6= |µ′uni|∧φ

µ 6= µ′∧φ
DISEQ-WITNESS

(Θ(φ,µ))
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3.2 Length-Guided Splitting of Equalities

The original calculus rule for handling complex equalities is EQ-VAR, which systemati-
cally enumerates the different ways of matching up left-hand and right-hand side terms.
For a practical proof procedure, naive use of this rule is sub-optimal in two respects: the
number of cases to be considered grows quickly (in the worst case, exponentially in the
number of equalities); and the rule does not provide any guidance on the order in which
the cases should be considered, which can have dramatic impact on the performance
for satisfiable problems. We found that both aspects can be improved by eagerly taking
arithmetic constraints on the length of strings into account.

To present the approach, we assume that conjunctions φ = (φ=∧φ 6=∧φ∈∧φa) are
continuously saturated by propagating length information from φ= to φa: for every
equality s = t, a corresponding length equality |s| = |t| is added, compound expres-
sions |s · t| are rewritten to |s|+ |t|, and the length |w| of concrete words w ∈ Σ∗ is
evaluated. In addition, for every variable v an inequality |v| ≥ 0 is generated. Similar
propagation is possible for membership constraints in φ∈.

Prior to splitting equalities from φ=, it is then possible to check the satisfiability
of arithmetic constraints φa (using any solver for Presburger arithmetic), and compute
a satisfying assignment β. This assignment defines the length valβ(|v|) of all string
variables v, and thus uniquely determines how the right-hand side of an equality u ·
t1 = t2 should be split into a prefix corresponding to u, and a suffix corresponding
to t1. We obtain the following modified splitting rule, which has the side condition
that u · t1 = t2 · v · t3 is linear, and that a satisfying assignment β of φa exists such that
valβ(|t2|)≤ valβ(|u|)≤ valβ(|t2 · v|):(

(t1 = v2 · t3∧φa∧φ)[u/t2 · v1]
)
[v/v1 · v2]

u · t1 = t2 · v · t3∧ (|u|< |t2|∧φa)∧φ

u · t1 = t2 · v · t3∧ (|t1|< |t3|∧φa)∧φ

u · t1 = t2 · v · t3∧φa∧φ
LEN-EQ-SPLIT

A similar rule is introduced to cover the situation that the right-hand side has to be split
between two concrete letters, i.e., in case we have valβ(|u|) = valβ(|t2|) and valβ(|t1|) =
valβ(|t3|) for an equation u · t1 = t2 · t3.

4 Implementation and Experiments

We compare the new version of Norn5 to other solvers on two sets of benchmarks.
First, we use the well-known set of Kaluza benchmarks, which were translated to SMT-
LIB by the authors of CVC4 [5]. These benchmarks contain constraints generated by
a Javascript analysis tool, and are mainly equational, with relatively little use of regu-
lar expressions. Results are given in Table 1, and show that currently Z3-str [12] per-
forms best for this kind of benchmarks; however, Norn can solve 27 benchmarks that
no other tool can handle (Table 2). S3 [11] produced internal errors on a larger number
of the Kaluza benchmarks, and sometimes results that were contradictory with the other

5 Tool and benchmarks are available on http://user.it.uu.se/%7Ejarst116/norn/
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Table 1. Experimental results. All experiments were done on an AMD Opteron 2220 SE machine,
running 64-bit Linux and Java 1.8. Runtime was limited to 240s (wall clock time), and heap space
to 1.5GB. CEGAR benchmarks downsized from UTF16 when necessary.

Norn 1.0 CVC4 1.4 Z3-str 1.0.0 S3
Kaluza (sat) 33 072 33 727 34 770 30 925

(unsat) 11 595 11 625 11 799 11 408
(unknown) 2 617 1 932 715 3 081
(crash) 0 0 0 1 870

CEGAR (sat) 712 268 – 307
(unsat) 315 112 – 530
(unknown) 0 340 – 158
(crash/OOM) 0 307 – 32

Table 2. Complementarity of the results: number of problems for which one tool can show sat/un-
sat, whereas another tool times out or crashes. For instance, Norn can prove satisfiability of 480
Kaluza benchmarks on which CVC4 times out.

Norn CVC4 Z3-str S3
sat unsat sat unsat sat unsat sat unsat

Norn (Kaluza) – – +1 135 +57 +1 698 +231 +64 +125
(CEGAR) – – 0 0 – – 0 0

CVC4 (Kaluza) +480 +27 – – +1 043 +174 +1 0
(CEGAR) +436 +211 – – – – +134 +396

Z3-str (Kaluza) 0 +27 0 0 – – 0 0
(CEGAR) – – – – – – – –

S3 (Kaluza) +2 184 +339 +2 708 +312 +3 750 +486 – –
(CEGAR) +134 +56 +51 +22 – – – –

solvers: for 95 problems, S3 claimed unsat, whereas Z3-str and CVC4 reported sat. For
27 of those, also Norn gave the answer sat. No contradictions were observed between
CVC4, Z3-str, and Norn.

As a second set of benchmarks, we considered queries generated during CEGAR-
based verification of string-processing programs [1]; those queries are quite small, but
make heavy use of regular expressions and operators like the Kleene star. Norn could
solve all of the benchmarks. Comparison with Z3-str was not possible, since the solver
does not support regular expressions. CVC4 and S3 both showed timeouts, ran out of
memory, or crashed on a large number of the benchmarks. For 10 problems, CVC4
claimed unsat, but Norn sat; for 1 problem, CVC4 reported sat, but Norn unsat. After
manual inspection of those examples, we concluded that Norn was giving the correct
answers; the CVC4 behaviour might be related to fact that we were forced to use the op-
tions --strings-exp to enable experimental string functionality, required for negated
membership predicates. More drastically, S3 and Norn gave contradicting answers in
altogether 413 cases, with manual inspection again indicating that the answer by Norn
was correct. We plan to clarify all issues with the authors of CVC4 and S3 (they could
not be resolved before paper submission).
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