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Abstract. MapReduce is a popular programming model for data parallel compu-
tation. In MapReduce, the reducer produces an output from a list of inputs. Due
to the scheduling policy of the platform, the inputs may arrive at the reducers
in different order. The commutativity problem of reducers asks if the output of a
reducer is independent of the order of its inputs. Although the problem is unde-
cidable in general, the MapReduce programs in practice are usually used for data
analytics and thus require very simple control flow. By exploiting the simplicity,
we propose a programming language for reducers where the commutativity prob-
lem is decidable. The main idea of the reducer language is to separate the control
and data flow of programs and disallow arithmetic operations in the control flow.
The decision procedure for the commutativity problem is obtained through a re-
duction to the equivalence problem of streaming numerical transducers (SNTs),
a novel automata model over infinite alphabets introduced in this paper. The de-
sign of SNTs is inspired by streaming transducers (Alur and Cerny, POPL 2011).
Nevertheless, the two models are intrinsically different since the outputs of SNTs
are integers while those of streaming transducers are data words. The decidability
of the equivalence of SNTs is achieved with an involved combinatorial analysis
of the evolvement of the values of the integer variables during the runs of SNTs.

1 Introduction

MapReduce is a popular framework for data parallel computation. It has been adopted
in various cloud computing platforms including Hadoop [8] and Spark [16]. In a typ-
ical MapReduce program, a mapper reads from data sources and outputs a list of
key-value pairs. The scheduler of the MapReduce framework reorganizes the pairs
(k, v1), (k, v2) . . . (k, vn) with the same key k to a pair (k, l), where l is a list of val-
ues v1, v2, . . . , vn, and sends (k, l) to a reducer. The reducer then iterates through the
list and outputs a key-value pair 3. More specifically, taking the “word-counting” pro-
gram as an example. It counts the occurrences of each word in a set of documents.
The mappers read the documents and output for each document a list in the form of
(word1, count1), (word2, count2), . . . , (wordn, countn), where countk is the num-
ber of occurrences of wordk in the document being processed. These lists will be re-
organized into the form of (word1, list1), (word2, list2), . . . , (wordn, listn) and sent

? We found some inaccuracies in the conference version, which are fixed in this long version.
We suggest the readers to refer to this version.

3 We focus on the Hadoop style reducer in this work.
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to the reducers, where listk is a list of integers recording the number of occurrences of
wordk. Note that the order of the integers in the lists can differ in different executions
due to the scheduling policy. This results in the commutativity problem.

A reducer is said to be commutative if its output is independent of the order of
its inputs. The commutativity problem asks if a reducer is commutative. A study from
Microsoft [18] reports that 58% of the 507 reducers submitted to their MapReduce
platform are non-commutative, which may lead to very tricky and hard-to-find bugs.
As an evidence, those reducers already went through serious code review, testing, and
experiments with real data for months. Still, among them 5 reducers containing very
subtle bugs caused by non-commutativity (confirmed by the programmers).

The reducer commutativity problem in general is undecidable. However, in practice,
MapReduce programs are usually used for data analytics and have very simple control
structures. Many of them just iterate through the input list and compute the output with
very simple operations. We want to study if the commutativity problem of real-world
reducers is decidable. It has been shown in [3] that even with a simple programming
language where the only loop structure allowed is to go over the input list once, the
commutativity problem is already undecidable. Under scrutiny, we found that the lan-
guage is still too expressive for typical data analytics programs. For example, it allows
arbitrary multiplications of variables, which is a key element in the undecidability proof.

Contributions. By observing the behavioral patterns of reducer programs for data ana-
lytics, we first design a programming language for reducers to characterize the essential
features of them. We found that the commutativity problem becomes decidable if we
partition variables into control variables and data variables. Control variables can oc-
cur in transition guards, but can only store values directly from the input list (e.g., it
is not allowed to store the sum of two input values in a control variable). On the other
hand, data variables are used to aggregate some information for outputs (e.g. sum of the
values from the input list), but cannot be used in transition guards. This distinction is in-
spired by the streaming transducer model [1], which, we believe, provides good insights
for reducer programming language design in the MapReduce framework. Moreover, we
assume that there are no nested loops in the language for reducers, which is a typical
situation for MapReduce programs in practice.

We then introduce a formalism called streaming numerical transducers (SNT) and
obtain a decision procedure for the commutativity problem of the aforementioned lan-
guage for reducers. Similar to the language for reducers, SNTs distinguish between
control variables and data variables. Although conceptually SNTs are similar to stream-
ing transducers over data words introduced in [1], they are intrinsically different in the
following sense: The outputs of SNTs are integers and the integer variables therein are
manipulated by linear arithmetic operations. On the other hand, the outputs of streaming
transducers are data words, and the data word variables are manipulated by concatena-
tion operations. SNTs in this paper are assumed to be generalized flat, which general-
izes the “flat” automata (c.f. [11]) in the sense that each nontrivial strongly connected
component (SCC) of the transition graph is a collection of cycles, instead of one single
cycle. Generalized flat transition graphs are sufficient to capture the transition structures
of the programs in the aforementioned language for reducers.
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The decision procedure for the commutativity problem is obtained by reducing to
the equivalence problem of SNTs, which is further reduced to the non-zero output prob-
lem. The non-zero output problem asks whether given an SNT, there exists some input
data word w and initial valuation of variables such that the output of the SNT on w is
defined and non-zero. For the non-zero output problem of SNTs, we apply a nontriv-
ial combinatorial analysis of the evolvement of the integer variables during the runs of
SNTs (Section 5.1). The key idea of the decision procedure is that, generally speaking,
if only the non-zero output problem is concerned, the different cycles in the SCCs can
be dealt with independently (Section 5.2 and 5.3). As a further evidence of the useful-
ness of SNTs for MapReduce programs, we demonstrate that SNTs can be composed
to model and analyze the reducer programs that read the input list multiple times (Sec-
tion 6).

As a novel formalism over infinite alphabets, the model of SNTs is interesting in its
own right: On the one hand, SNTs are expressive in the sense that they include linear
arithmetic operations on integer variables, while at the same time admit rather general
transition graphs, that is, generalized flat transition graphs. On the other hand, despite
this strong expressibility, it turns out that the commutativity problem, the equivalence
problem, and the non-zero output problem of SNTs are still decidable.

Related work. SNTs can be seen as generalizations of register automata [10,14] where
registers correspond to the control variables in our terminology. Although register au-
tomata can have very general transition graphs beyond the generalized flat ones, they
do not allow arithmetic operations on the variables. There have been many automata
models that contain arithmetic operations. Counter automata contain counters whose
values can be updated by arithmetic operations (see [9,5,11,7,6], to cite a few) in each
transition. Intuitively, the major difference between SNTs and counter automata is that
SNTs work on data words and can apply arithmetic operations to an unbounded number
of independent integer values, whereas counter automata contain a bounded number of
counters which involve only a bounded number of integer values in one configuration.
Cost register automata (CRA) [2] also contain arithmetic operations, where the costs
are stored into registers for which arithmetic operations can be applied. The equiva-
lence of CRAs with the addition operation is decidable. SNTs are different from CRAs
since the inputs of CRAs are words on finite alphabets, while those of SNTs are data
words. Moreover, SNTs allow guards over variables ranging over an infinite domain
but CRAs do not. There have been several transducer models on data words: Streaming
transducers [1] mentioned before and symbolic transducers [17]. Symbolic transducers
have data words as both inputs and outputs. They can put guards on the input value in
one position of data words, but are incapable of comparing and aggregating multiple in-
put values in different positions. In [13], the authors considered a model for reducers in
the MapReduce framework where the only comparison that can be performed between
data values are equalities, and the reducers are essentially register automata/transducers.
Their model can describe a system with multiple layers of mappers and reducers.

The rest of the paper is organized as follows. Section 2 defines the notations used
in this paper. Section 3 describes our design of the programming language for reduc-
ers. Section 4 defines SNTs. Section 5 describes the decision procedure of SNTs. Sec-
tion 6 discusses how to use our approach to analyze the commutativity property of more



4 Yu-Fang Chen, Lei Song, Zhilin Wu

challenging data analytics programs. We conclude this work in Section 7. The missing
technical details and proofs can be found in the full version of this paper [4].

2 Preliminaries

Let Z, Z6=0 be the set of integers, non-zero integers, respectively. We assume that all
variables range over Z. For a function f , let dom(f) and rng(f) denote the domain and
range of f , respectively.

An expression e over the set of variables Z is defined by the following rules, e ::=
c | cz | (e + e) | (e − e), where z ∈ Z and c ∈ Z. As a result of the commutativity
and associativity of +, without loss of generality, we assume that all expressions e
in this paper are of the form c0 + c1z1 + · · · + cnzn, where c0, c1, . . . , cn ∈ Z and
z1, . . . , zn ∈ Z. For an expression e = c0 + c1z1 + · · · + cnzn, let vars(e) denote the
set of variables zi such that ci 6= 0. Let EZ denote the set of all expressions over the set
of variables Z. In this paper, it is assumed that all the constants in the expressions are
encoded in binary.

A valuation ρ of Z is a function from Z to Z. A symbolic valuation Ω of Z is a
function that maps a variable in Z to an expression (possibly over a different set of
variables). The value of e under a valuation ρ (resp. symbolic valuation Ω), denoted
by JeKρ (resp. JeKΩ), is defined recursively in the standard way. For example, let Ω
be a symbolic valuation the maps z1 to z1 + z2 and z2 to 3z2, then J2z1 + z2KΩ =
2Jz1KΩ + Jz2KΩ = 2(z1 + z2) + 3z2 = 2z1 + 5z2. For a valuation ρ, a variable z, and
c ∈ Z, define the valuation ρ[c/z] such that ρ[c/z](z) = c and ρ[c/z](z′) = ρ(z′) for
z′ 6= z.

In this paper, we use X and Y to denote the sets of control variables and data
variables, respectively. We use the variable cur /∈ X ∪ Y to store the data value that is
currently being processed in the input list and use X+ to denote the set X ∪ {cur}.

A guard over Z is a formula defined by the rules g ::= true | x1 = x2 | x1 > x2 |
x1 < x2 | g ∧ g, where x1, x2 ∈ Z. Let ρ be a valuation of X+ and g be a guard over
X+ Then ρ satisfies g, denoted by ρ |= g, iff g is evaluated to true under ρ. Let [n]
denote the set {1, 2, . . . , n}, and [a, b] denote the set {a, a+ 1, . . . , b} when b ≥ a and
∅ otherwise. A permutation on [n] is a bijection from [n] to [n]. The set of permutations
on [n] is denoted by Sn.

A data word w is a sequence of integer values d1 . . . dn such that di ∈ Z for each
i. We use hd(w), tl(w), and |w| to denote the data value d1, the tail d2 . . . dn, and the
length n, respectively. We use ε to denote an empty data word. As a convention, we
let hd(ε) = ⊥, tl(ε) = ⊥, and |ε| = 0. Given two data words w,w′, we use w.w′ to
denote their concatenation. Given σ ∈ Sn, we lift σ to data words by defining σ(w) =
dσ(1) . . . dσ(n), for each data word w = d1 . . . dn. We call σ(w) as a permutation of w.

3 Language For Integer Reducers

We discuss the rationale behind the design of the programming language for reducers
such that the commutativity problem is decidable. The language intends to support the
following typical behavior pattern of reducers: A reducer program iterates through the
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input data word once, aggregates intermediate information into variables, and produces
an output when it stops. Later in Section 6, we will show an extension that allows
resetting the iterators so that an input data word can be traversed multiple times.

s ∈ Statements ::= y := e; | y+= e; | x := x′; | s s | if (g){s} [else {s}]
p ∈ Programs ::= loop{s next; }ret r; | s next; p

Fig. 1. A Simple Programming Language for Reducers. Here x ∈ X are control variables, y ∈ Y
are data variables, x′ ∈ X+, e ∈ EX+ are expressions, and r is an expression in EX∪Y . The
square brackets mean that the else branch is optional.

More concretely, we focus on the programming language in Fig. 1. The language
includes the usual features of program languages, variable assignments, sequential com-
positions, and conditional branchings. It also includes a statement next; which is used
to advance the data word iterator. The loop{s next; } statement repeatedly executes the
loop body s next; until reaching the end of input data word. The novel feature of the
language is that we partition the variables into two sets: control variables X and data
variables Y . The variables from X are used for guiding the control flow and the vari-
ables from Y are used for storing aggregated intermediate data values. The variables
from X can store only either initial values of variables in X or values occurring in the
input data word. They can occur both in guards g or arithmetic expressions e. On the
other hand, the variables from Y can aggregate the results obtained from arithmetic ex-
pressions e, but cannot occur in guards g or arithmetic expressions e. The initial values
of variables can be arbitrary. Given a program p, a data word w, and a valuation ρ0, we
use pρ0(w) to denote the output of p on w, with the initial values of variables given by
ρ0. The formal semantics of the language can be found in the appendix.

Note that we do not allow multiplications in the language, so the reduction from the
Diophantine equations in [3] no longer works. Even though, if we do not distinguish
the control and data variables, we can show easily that commutativity problem for this
language is still undecidable, by a reduction from the reachability problem of Petri nets
with inhibitor arcs [12,15]. The reachability problem of Petri nets with inhibitor arcs
is reduced to the reachability problem of the reducer programs, which is in turn easily
reduced to the commutativity problem of reducer programs.

Notice that in the programming language, we only allow additions (+=) or assign-
ments (:=) of a new value computed from an expression over X+ to data variables. In
Fig. 2 we demonstrate a few examples performing data analytics operations. Observe
that all of them follow the same behavioral pattern: The program iterates through the
input data word and aggregates some intermediate information into some variables. The
operations used for the aggregation are usually rather simple: either a new value is added
to the variable (e.g. sum and cnt in Fig. 2) storing the aggregated information, or a new
value is assigned to the variable (e.g. max in Fig. 2). Actually, the similar behavioral
pattern occurs in all programs we have investigated. Still, one may argue that allowing
only additions and subtractions is too restrictive for data analytics. In Section 6, we will
discuss the extensions of the language to support more challenging examples, such as
Mean Absolute Deviation and Standard Deviation.
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max{
max:=cur;
next;
loop{
if (cur>max)
{max:=cur;}

next;
}
ret max;}

sum{
sum:=cur;next;
loop{sum+=cur;next;}
ret sum;}

cnt{
cnt:=0;next;
loop{cnt+=1;next;}
ret cnt;}

Fig. 2. Examples of Reducers Performing Data Analytics Operations

We focus on the following problems of reducer programs: (1) Commutativity: given
a program p, decide whether for each data word w and its permutation w′, it holds that
pρ0(w) = pρ0(w

′) for all initial valuations ρ0. (2) Equivalence: given two programs p
and p′, decide whether for each data word w and each initial valuation ρ0, it holds that
pρ0(w) = p′ρ0(w).

4 Streaming Numerical Transducers

In this section, we introduce streaming numerical transducers (SNTs), whose inputs
are data words and outputs are integer values. In SNT, we assume all data words end
at a special symbol �, i.e., in the form of Z∗�. A SNT scans a data word from left to
right, records and aggregates information using control and data variables, and outputs
an integer value when it finishes reading the data word. We will use SNTs to decide the
commutativity and equivalence problem of the reducer programs defined in Section 3.

A SNT S is a tuple (Q,X, Y, δ, q0, O), where Q is a finite set of states, X is a finite
set of control variables to store data values that have been met, Y is a finite set of data
variables to aggregate information for the output, δ is the set of transitions, q0 ∈ Q is
the initial state, O is the output function, which is a partial function from Q to EX∪Y .
The set of transitions δ comprises

– the tuples (q, g ∧ cur 6= �, η, q′), where q, q′ ∈ Q, g is a guard over X+ (defined
in Section 2), and cur 6= � denotes the fact that the current position is not the end
of the input, and η is an assignment function which is a partial function mapping
X ∪ Y to EX+∪Y such that for each x ∈ dom(η) ∩X , η(x) = cur,

– and the tuples (q, g ∧ cur = �, η, q′), where q, q′ ∈ Q, g is a guard over X , and η
is an assignment function such that cur 6∈ rng(η) (they are called the .-transitions).

We write q
(g,η)−−−→ q′ to denote (q, g, η, q′) ∈ δ for convenience.

In the following, we assume that for each .-transition (q, g ∧ cur = �, η, q′), q′

is a sink-state, that is, that are no transitions out of q′. Moreover, we adopt the con-
vention that when we mention the transition graph of an SNT S, we always ignore the
.-transitions.

In this paper, if not explicitly stated, we always assume that an SNT S satisfies the
following additional constraints. (1) Deterministic: For each pair of distinct transitions
originating from q, say (q, g1, η1, q

′
1) and (q, g2, η2, q

′
2), it holds that g1∧g2 is unsatisfi-

able. (2) Generalized flat: Each SCC (strongly connected component) S of the transition
graph of S is either a single state or a set of simple cycles {C1, . . . , Cn} such that there
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is a state q satisfying that each cycle Ci (where 1 ≤ i ≤ n) is of length one and is a
self-loop around q, (3) Independently evolving and copyless: For each (q, g, η, q′) ∈ δ
and for each y ∈ dom(η) ∩ Y , η(y) = e or η(y) = y + e for some expression e over
X+, (4) Monotone: For each control variable x ∈ X and each nontrivial SCC S of the
transition graph, when staying in S, either the value of x is unchanged, or x computes
the maximum or minimum value. Formally, for each nontrivial SCC S of the transition
graph, the following conditions hold.

1. Each transition (q, g, η, q) in S satisfies that g is a conjunction of the formulae of
the form cur = x, cur < x, or cur > x, where x ∈ X , and for each x′ ∈ dom(η),
η(x′) = cur.

2. For each control variable x ∈ X , the following constraints hold,
– for each self-loop (q, g, η, q) in S, it holds that cur = x, cur < x, or cur > x

is a conjunct of g,
– either all the self-loops (q, g, η, q) such that cur > x is a conjunct of g satisfy

that η(x) = cur, or none of them satisfies this constraint, similarly for the
self-loops where cur < x occurs,

– there do not exist self-loops (q, g1, η1, q) and (q, g2, η2, q) in S such that cur >
x is a conjunct of g1, η1(x) = cur, cur < x is a conjunct of g2, and η2(x) =
cur.

The semantics of an SNT S is defined as follows. A configuration of S is a pair
(q, ρ), where q ∈ Q and ρ is a valuation of X ∪ Y . An initial configuration of S
is (q0, ρ0), where ρ0 assigns arbitrary values to the variables from X ∪ Y . A se-
quence of configurations (q0, ρ0)(q1, ρ1) . . . (qn, ρn) is a run of S over a data word

w = d1 . . . dn� iff there exists a path (sequence of transitions) P = q0
(g1,η1)−−−−→

q1
(g2,η2)−−−−→ q2 . . . qn−1

(gn,ηn)−−−−−→ qn
(gn+1,ηn+1)−−−−−−−−→ qn+1 such that for each i ∈ [n + 1],

ρi−1[di/cur] |= gi, and ρi is obtained from ρi−1 as follows: (1) For each x ∈ X , if
ηi(x) = cur then ρi(x) = di, otherwise ρi(x) = ρi−1(x). (2) For each y ∈ Y , if
y ∈ dom(ηi), then ρi(y) = Jηi(y)Kρi−1[di/cur], otherwise, ρi(y) = ρi−1(y). We call
(qn+1, ρn+1) the final configuration of the run. In this case, we also say that the run
follows the path P . We say that a path P in S is feasible iff there exists a run of S
following P .

Given a data word w = d1 . . . dn� and an initial configuration (q0, ρ0), if there is a
run of S over w� starting from (q0, ρ0) and with the final configuration (qn+1, ρn+1),
then the output of S over w� w.r.t. ρ0, denoted by Sρ0(w�), is JO(qn+1)Kρn+1

. Other-
wise, Sρ0(w�) is undefined, denoted by ⊥.

Example 1 (SNT for max). The SNT Smax for computing the maximum value of an
input data word is defined as ({q0, q1, q2}, {max}, ∅, δ, q0, O), where the set of transi-
tions δ and the output function O are illustrated in Fig.3 (here X = {max}, Y = ∅, and
max := cur denotes the assignment of cur to the variable max).
Proposition 1. For each reducer program p, one can construct an equivalent SNT Sp
which satisfies all the additional four constraints of SNTs, except the “Monotone” con-
straint. Moreover, the number of states of Sp and the maximum number of simple cycles
in an SCC of the transition graph of Sp are at most exponential in the number of branch-
ing statements in p.
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q0 q1
(cur 6= .,max := cur)

(cur > max ∧ cur 6= .,max := cur)

(cur < max ∧ cur 6= ., ∅)

O(q2) = max

(cur = ., ∅)

q2

(cur = max ∧ cur 6= ., ∅)

Fig. 3. The SNT Smax for computing the maximum value

Intuitively, the main difference between reducer programs and SNTs are as follows:
A reducer program moves to the next value of an input data word only when a next
statement is executed, while an SNT advances the iterator in each transition. As a result
of this difference, when constructing Sp in Proposition 1, for each pair of consecutive
“next;” statements in p, the subprogram between them is transformed into a collection
of transitions in Sp, one for each execution path in the subprogram. Since the number
of execution paths in a program is exponential in the number of branching statements
therein, there is an exponential blow-up in the construction. For a reducer program p, the
SNT Sp constructed in Proposition 1 is not necessarily monotone. We define the class
of monotone programs as the class of reducer programs p such that Sp is monotone. All
the examples in Fig. 2 are monotone programs.

We focus on three decision problems of SNTs: (1) Commutativity: Given an SNT S,
decide whether S is commutative, that is, whether for each data word w� and each per-
mutation w′ of w, Sρ0(w�) = Sρ0(w′�) for all initial valuations ρ0. (2) Equivalence:
Given two SNTs S,S ′, decide whether S and S ′ are equivalent, that is, whether over
each data word w�, Sρ0(w�) = S ′ρ0(w�) for all initial valuations ρ0. (3) Non-zero
output: Given an SNT S, decide whether S has a non-zero output, that is, whether there
are a data word w� and an initial valuation ρ0 such that Sρ0(w�) /∈ {⊥, 0}.

We first observe that the commutativity problem of SNTs can be reduced to the
equivalence problem, which can be further reduced to the non-zero output problem of
SNTs. For analyzing the complexity of the decision procedure in the next section, we
will state the complexity of the reductions w.r.t. the following factors of SNTs: the
number of states, the number of control variables (resp. data variables), and the number
of simple cycles of the transition graph. We will adopt the convention that if after a
reduction, some factor becomes exponential, then this fact will be stated explicitly, and
on the other hand, if some factor is still polynomial after the reduction, then this fact
will be made implicit and will not be stated explicitly.

Proposition 2. The commutativity problem of SNTs is reduced to the equivalence prob-
lem of SNTs in polynomial time.

We briefly describe the idea of the reduction in Proposition 2 here. Suppose that
S = (Q,X, Y, δ, q0, O) is an SNT such that X = {x1, . . . , xk} and Y = {y1, . . . , yl}.
Without loss of generality, we assume that the output of S is defined only for data words
of length at least two. We will construct two SNTs S1 and S2 so that S is commutative
iff S is equivalent to both S1 and S2.
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– Intuitively, over a data word w = d1d2d3 . . . dn� with n ≥ 2, S1 simulates the run
of S over d2d1d3 . . . dn�, that is, the data word obtained from w� by swapping
the first two data values. An additional write-once control variable x′ is introduced
in S1 to store the data value d1.

– Intuitively, over a data word w = d1d2d3 . . . dn� with n ≥ 2, S2 simulates the run
of S over d2d3 . . . dnd1�, that is, the data word obtained from w� by moving the
first data value to the end. An additional write-once control variable x′ is introduced
in S2 to store the data value d1.

The correctness of this reduction follows from the fact that all the permutations of
d1 . . . dn� can be generated by composing the two aforementioned permutations cor-
responding to S1 and S2 respectively (cf. Proposition 1 in [3]). The construction of S1
(resp. S2) from S is in polynomial time w.r.t. the size of S.

Next, we reduce the equivalence problem of two SNTs S1,S2 to the non-zero output
problem of another SNT S3.

Proposition 3. From two SNTs S1 and S2, an SNT S3 can be constructed in polynomial
time such that (S1)ρ0(w�) 6= (S2)ρ0(w�) for some data word w� and valuation ρ0
iff (S3)ρ0(w�) 6∈ {⊥, 0} for some data word w� and valuation ρ0.

The SNT S3 can be constructed by the product construction. Note that the product
construction preserves both the “Generalized-flat” and “Monotone” constraint.

To facilitate the decision procedure in the next section, in the following, we will
show for each SNT S, the nonzero-output problem of S can be reduced to a series of
nonzero-output problems of normalized SNTs S ′ which enjoy some nice properties. To
this end, we introduce some additional notations below.

Let P be a path in S from q0 to some state q. We define ConfP as the set of con-
figurations (q, ρ) such that there are a data word w and an initial valuation ρ0 satis-
fying that the run of S over w, starting from the initial configuration (q0, ρ0), follows
a path PP ′ (i.e. P is a prefix of the path PP ′), and reaches the configuration (q, ρ)
after going through P . Let x1, x2 ∈ X . Then P is said to enforce x1 < x2 (resp.
x1 = x2, x1 > x2) if for each (q, ρ) ∈ ConfP , it holds that ρ |= x1 < x2 (resp.
ρ |= x1 = x2, ρ |= x1 > x2).

An SNT S = (Q,X, Y, δ, q0, O) is said to be normalized if (1) Path-feasible: for
each path P starting from q0, ConfP 6= ∅, (2) State-dominating: all the paths starting
from the initial state q0 and ending at a given state q (including the empty path q0)
enforce the same order relation between control variables, more precisely, for each state
q and each pair of distinct control variables x1, x2 ∈ X , all the paths from q0 to q
enforce x1 > x2, or all the paths from q0 to q enforce x1 < x2, or all the paths from q0 to
q enforce x1 = x2, (3) .-transition-guard-free: Each .-transition (q, g ∧ cur = ., η, q′)
satisfies that g = true.

Proposition 4. For each SNT S, the nonzero-output problem of S can be reduced to a
series of the nonzero-output problems of normalized SNTs S ′ in exponential time.

The main idea of the reduction in Proposition 4 is to record in the states the order
relation between control variables, which is enforced by the path that has been traversed
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so far. Since a state in S may be split into several states in S ′, the transition graph of
S ′ might not be generalized flat any more. Nevertheless, we can show that this will not
happen and the “Monotone constraint” guarantees that the normalized SNTs S ′ are still
generalized flat. The SNTSmax illustrated in Fig. 3 is normalized, since there is just one
control variable in Smax.

In the rest of this paper, we assume that all the SNTs S = (Q,X, Y, δ, q0, O) are
normalized. Moreover, for each q ∈ Q, we use �q to denote the total preorder com-
prising the pairs (xi, xj), (xj , xi) ∈ X ×X such that all the paths from q0 to q enforce
xi = xj , the pairs (xi, xj) ∈ X × X such that all the paths from q0 to q enforce
xi < xj . Let∼q denote the equivalence relation on [k] induced by�q , that is, i ∼q j iff
xi �q xj and xj �q xi. We assume that each normalized SNT S = (Q,X, Y, δ, q0, O)
satisfies that for each q ∈ Q, �q and ∼q can be computed from q in linear time. In
addition, we use rq to denote the number of equivalence classes of ∼q .

5 Decision procedure for the non-zero output problem

We prove our main result, Theorem 1, by presenting a decision procedure for the non-
zero output problem of normalized SNTs. We fix an SNT S = (Q,X, Y, δ, q0, O) such
thatX = {x1, . . . , xk} and Y = {y1, . . . , yl}. We first define summaries of the compu-
tations of S on paths and cycles in Section 5.1, then present a decision procedure for the
case that the transition graph of S is a generalized lasso in Section 5.2. The transition

graph of S is said to be a generalized lasso if it comprises a handle H = q0
(g1,η1)−−−−→

q1 . . . qm−1
(gm,ηm)−−−−−→ qm, a collection of simple cycles C1, . . . , Cn such that each cy-

cle Ci is a self-loop around qm, and a .-transition qm
(cur=.,ηm+1)−−−−−−−−→ qm+1. We extend

the procedure to SNTs whose transition graphs are not necessarily generalized lassos in
Section 5.3.

Theorem 1. The non-zero output problem of normalized SNTs can be decided in time
exponential in the number of control and data variables and the number of simple cycles
of the transition graph.

Corollary 1. The commutativity problem of monotone reducer programs can be de-
cided in time exponential in the number of control and data variables, and doubly ex-
ponential in the number of branching statements of reducer programs.

Remark 1. Though the decision procedure for the commutativity problem of monotone
reducer programs has a complexity exponential in the number of data variables, and
doubly exponential in the number of branching statements, we believe that the decision
procedure could still be implemented to automatically analyze the programs in practice,
in which these numbers are usually small.

5.1 Summarization of the computations on paths and cycles

Suppose P = p0
(g1,η1)−−−−→ p1 . . . pn−1

(gn,ηn)−−−−−→ pn is a path of S. We assume that the
initial values of the control and data variables are represented by a symbolic valuation
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Ω over X ∪ Y such that for each pair of variables xi, xj ∈ X , Ω(xj) = Ω(xj) iff
xi ∼p0 xj . When P is traversed in a run of S over a data word w, the data value in
a position of w may have to be (un)equal to the initial value of some control variable
or some other data value in w that have been met before (enforced by the guards and
assignments in P ). Let ∼P denote the equivalence relation on [n + k] induced by P
defined as follows:

– For each i, j ∈ [k], i ∼P j iff xi ∼p0 xj .
– For each i, j ∈ [n], k + i ∼P k + j iff the guards and assignments on P enforce

that the data value in the i-th position of w must be equal to that in the j-th position
of w.

– For each i ∈ [k] and j ∈ [n], i ∼P k + j iff the guards and assignments on P
enforce that the data value in the j-th position of w must be equal to the initial
value of xi.

Assuming that there are rP “fresh” equivalence classes of∼, that is, equivalence classes
J of ∼P such that J ∩ [k] = ∅ (intuitively, the data value represented by J is not
enforced to be equivalent to the initial values of control variables). We use the variables
dP1 , d

P
2 , . . . , d

P
rP

to denote the data values corresponding to these “fresh” equivalence
classes, one for each such equivalence class. Note here we use the superscript P to
denote the fact that rP (resp. dP1 , . . . ) is associated with the path P . In addition, we
assume that there are sp0 equivalence classes of∼P on [k], that is, equivalence classes J
of∼P on [n+k] such that J∩ [k] 6= ∅. Suppose J1, . . . , Jsp0 is an enumeration of these
equivalence classes of ∼P on [k]. Let πp0 : [sp0 ] → [k] such that πp0(j) = min(Jj ∩
[k]) for each j ∈ [sp0 ]. Intuitively, πp0 chooses a representative control variable for
each equivalence class. Note that πp0 is an injective function, moreover, sp0 and πp0
are completely determined by ∼p0 .

Example 2. Let S be an SNT where X = {x}, Y = {y}, and P = p0
(g1,η1)−−−−→

p1
(g2,η2)−−−−→ p2

(g3,η3)−−−−→ p3 be a path of S such that (g1, η1) = (cur = x, y := cur),
(g2, η2) = (true, (x := cur, y := y + cur)), (g3, η3) = (cur = x, y := y + cur). Then
k = 1, n = 3. The guards and assignments enforce that the data value in position 1 is
equal to the initial value of x, which implies that 1 ∼P 1+1, i.e. 1 ∼P 2, in addition, the
data value in position 2 is equal to that in position 3, which implies that 1+2 ∼P 1+3,
i.e. 3 ∼P 4. Therefore, the equivalence relation ∼P has two equivalence classes, {1, 2}
and {3, 4}, of which {3, 4} is the fresh equivalence class. We conclude that rP = 1 and
dP1 is used to denote the data value corresponding to this fresh equivalence class.

Proposition 5. Suppose that P is a path starting form p0 and the initial values ofX∪Y
are represented by a symbolic valuation Ω such that for each pair of variables xi, xj ∈
X , Ω(xj) = Ω(xj) iff xi ∼p0 xj . Then the values of X ∪ Y after traversing the path
P are specified by a symbolic valuation Θ(P,Ω) satisfying the following conditions.

– The set of indices of X , i.e., [k], is partitioned into IPpe and IPtr, the indices of per-
sistent and transient control variables, respectively. A control variable is persistent
if it stores the initial value of some control variable after traversing P , otherwise,
it is transient.
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– For each xj ∈ X such that j ∈ IPpe, Θ(P,Ω)(xj) = Ω(xπp0 (πPpe(j))
), where πPpe :

IPpe → [sp0 ] is a mapping from the index of a persistent control variable xj to
the index of the equivalence class such that the initial value of control variables
corresponding to this equivalence class is assigned to xj after traversing P .

– For each xj ∈ X such that j ∈ IPtr, Θ(P,Ω)(xj) = dP
πPtr(j)

, where πPtr : I
P
tr → [rP ]

is a mapping from the index of a transient control variable to the index of the data
value assigned to it.

– For each yj ∈ Y ,

Θ(P,Ω)(yj) = εPj + λPj Ω(yj) +
∑

j′∈[sp0 ]

αPj,j′Ω(xπp0 (j′)) +
∑

j′′∈[rP ]

βPj,j′′d
P
j′′ ,

where εPj , λ
P
j , α

P
j,1, . . . , α

P
j,sp0

, βPj,1, . . . , β
P
j,rP

are integer constants such that λPj ∈
{0, 1} (as a result of the “independently evolving and copyless” constraint). It can
happen that λPj = 0, which means thatΩ(yj) is irrelevant toΘ(P,Ω)(yj). Similarly

for αPj,1 = 0, and so on.

In Proposition 5, the sets IPpe and IPtr, the mapping πPpe and πPtr, and the constants
εPj , λ

P
j , . . . , β

P
j,rP

only depend on P and are independent of Ω. In addition, they can

be computed in polynomial time from (the transitions in) P . We define (πPpe)
−1 as the

inverse function of πPpe, that is, for each j′ ∈ rng(πPpe), (π
P
pe)
−1(j′) = {j ∈ IPpe |

πP (j) = j′}. Similarly for (πPtr)
−1.

As a corollary of Proposition 5, the following result demonstrates how to summarize
the computations of S on the composition of two paths.

Corollary 2. Suppose that P1 and P2 are two paths in S such that the last state of P1

is the same as the first state of P2. Moreover, let Θ(P1,Ω) (resp. Θ(P2,Ω)) be the sym-
bolic valuation summarizing the computation of S on P1 (resp. P2). Then the symbolic
valuation summarizing the computation of S on P1P2 is Θ(P2, Θ

(P1,Ω)).

Let the first state of P1 and P2 be p1,0 and p2,0 respectively. In order to get a
better understanding of the relation between Θ(P2, Θ

(P1,Ω)) and (Θ(P1,Ω), Θ(P2,Ω)),
in the following, for each yj ∈ Y , we obtain a more explicit form of the expression
Θ(P2, Θ

(P1,Ω))(yj), by unfolding therein the expression Θ(P1,Ω),
Θ(P2, Θ

(P1,Ω))(yj) =
(
εP2
j + λP2

j εP1
j

)
+
(
λP2
j λP1

j

)
Ω(yj) +

∑
j′∈rng(πP1

pe )

λP2
j αP1

j,j′ +
∑

j′′∈(πP1
pe )−1(j′) ∩ rng(πp2,0 )

αP2

j,(πp2,0 )−1(j′′)

Ω(xπp1,0 (j′)) +

∑
j′∈[sp1,0 ]\rng(πP1

pe )

(
λP2
j αP1

j,j′

)
Ω(xπp1,0 (j′)) +

∑
j′∈rng(πP1

tr )

λP2
j βP1

j,j′ +
∑

j′′∈(πP1
tr )−1(j′)∩rng(πp2,0 )

αP2

j,(πp2,0 )−1(j′′)

 dP1

j′ +

∑
j′∈[rP1 ]\rng(πP1

tr )

(
λP2
j βP1

j,j′

)
dP1

j′ +
∑

j′∈[rP2 ]

βP2

j,j′d
P2

j′ .
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In the equation, j′ ∈ rng(πP1
pe ) implies that for each j′′ ∈ (πP1

pe )
−1(j′), xj′′ stores

the initial value of xπp1,0 (j′) after traversing P1, which means that the initial value

of xj′′ for each j′′ ∈ (πP1
pe )
−1(j′) before traversing P2 is Ω(xπp1,0 (j′)), and some

of xj′′ for j′′ ∈ (πP1
pe )
−1(j′) are chosen as the representatives of the equivalence

classes of ∼p2,0 (in this case, j′′ is in the range of πp2,0 ), therefore we have the item ∑
j′′∈(πP1

pe )−1(j′) ∩ rng(πp2,0 )

αP2

j,(πp2,0 )−1(j′′)

Ω(xπp1,0 (j′)). When j′ ∈ rng(πP1
tr ), the

initial value of xj′′ for each j′′ ∈ (πP1
tr )
−1(j′) before traversing P2 is dP1

j′ , and some

of xj′′ for j′′ ∈ (πP1
tr )
−1(j′) are chosen as the representatives of equivalence classes of

∼p2,0 , therefore we have the item

 ∑
j′′∈(πP1

tr )−1(j′)∩rng(πp2,0 )

αP2

j,(πp2,0 )−1(j′′)

 dP1

j′ . For

j′ ∈ [sp1,0 ] = rng(πP1
pe )∪([sp1,0 ]\rng(πP1

pe )), we have the item (λP2
j αP1

j,j′)Ω(xπp1,0 (j′)),

i.e. the coefficient of Ω(xπp1,0 (j′)) in Θ(P1,Ω) multiplied by λP2
j . Moreover, for j′ ∈

[rP1 ] = rng(πP1
tr ) ∪ ([rP1 ] \ rng(πP1

tr )), we have the item (λP2
j βP1

j,j′)d
P1

j′ , i.e. the coeffi-

cient of dP1

j′ in Θ(P1,Ω) multiplied by λP2
j .

In the following, by utilizing Proposition 5 and Corollary 2, for each pathC` (` ≥ 1)
which is obtained by iterating a simple cycle C = (q, g, η, q) for ` times, we illustrate
how Θ(C`,Ω) is related to Θ(C,Ω) and `. For convenience, we call ` a cycle counter
variable. It is easy to observe that both ICpe and ICtr are the union of the equivalence
classes of ∼q . From the “Monotone” constraint, we know that for each x ∈ dom(η),
it holds that η(x) = cur. Therefore, if j ∈ ICpe, then xj still stores the initial value of
xj after traversing C. This implies that for each j′ ∈ rng(πCpe), let πq(j′) = j, then
πCpe(j) = j′. Therefore, for each j′ ∈ rng(πCpe), the value of xπq(j′) is unchanged after
traversing C.

Proposition 6. Suppose that C is a simple cycle (i.e. a self-loop around a state q) and
P = C` such that ` ≥ 2. Then the symbolic valuation Θ(C`,Ω) to summarize the
computation of S on P is as follows:
Θ(C`,Ω)(yj) =

(
1 + λCj + · · ·+ (λCj )

`−1
)
εCj + (λCj )

`Ω(yj) +∑
j′∈rng(πCpe)

(
1 + λCj + · · ·+ (λCj )

`−1
)
αCj,j′Ω(xπq(j′)) +∑

j′∈[sq ]\rng(πCpe)
(λCj )

`−1αCj,j′Ω(xπq(j′)) +

∑
j′∈rng(πCtr)

∑
s∈[`−1]

λCj βCj,j′ + ∑
j′′∈(πCtr)−1(j′)∩rng(πq)

αCj,(πq)−1(j′′)

 (λCj )
`−s−1dC,sj′ +

∑
j′∈[rC ]\rng(πCtr)

∑
s∈[`−1]

(
(λCj )

`−sβCj,j′
)
dC,sj′ +

∑
j′∈[rC ]

βCj,j′d
C,`
j′ ,

where the variables dC,s1 for s ∈ [`] represent the data values introduced when travers-
ing C for the s-th time.
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From Proposition 6 and the fact that λCj ∈ {0, 1}, we have the following observa-
tion.

– If λCj = 0, then

Θ(C`,Ω)(yj) = εCj +
∑

j′∈rng(πCpe)
αCj,j′Ω(xπq(j′)) +

∑
j′∈rng(πCtr)

 ∑
j′′∈(πCtr)−1(j′)∩rng(πq)

αCj,(πq)−1(j′′)

 dC,`−1j′ +
∑

j′∈[rC ]

βCj,j′d
C,`
j′ .

– If λCj = 1, then

Θ(C`,Ω)(yj) = `εCj +Ω(yj) +
∑

j′∈rng(πCpe)
`αCj,j′Ω(xπq(j′)) +

∑
j′∈[sq ]\rng(πCpe)

αCj,j′Ω(xπq(j′)) +

∑
j′∈rng(πCtr)

∑
s∈[`−1]

βCj,j′ + ∑
j′′∈(πCtr)−1(j′)∩rng(πq)

αCj,(πq)−1(j′′)

 dC,sj′ +

∑
j′∈[rC ]\rng(πCtr)

∑
s∈[`−1]

βCj,j′d
C,s
j′ +

∑
j′∈[rC ]

βCj,j′d
C,`
j′ .

Example 3. Let S ′max be the SNT illustrated in Fig. 4, which is obtained from Smax by
replacing the control variable max with x1 and introducing the data variables y1, y2, y3.
Consider the cycle C1 in S ′max. Then O(q2) = a0 + a1x1 + b1y1 + b2y2 + b3y3 =

y1 − 2y2 + y3. Moreover, IC1
pe = {1}, IC1

tr = ∅, πC1
pe (1) = 1, λC1

1 = λC1
2 = 1, and

λC1
3 = 0. On the other hand, IC2

pe = ∅, IC2
tr = {1}, πC2

tr (1) = 1, and λC2
1 = λC2

2 =

λC2
3 = 1. Suppose ` ≥ 2. Let dC1,1

1 , . . . , dC1,`
1 represent the data values introduced

when traversing the path C`1, then

Θ(C`1,Ω)(y1) = Ω(y1) + (4`)Ω(x1) + dC1,1
1 + · · ·+ dC1,`

1 ,

Θ(C`1,Ω)(y2) = Ω(y2) + (2`)Ω(x1) + 2dC1,1
1 + · · ·+ 2dC1,`

1 ,

Θ(C`1,Ω)(y3) = 3dC1,`
1 .

On the other hand, let dC2,1
1 , . . . , dC2,`

1 represent the data values introduced when travers-
ing the path C`2, then

Θ(C`2,Ω)(y1) = Ω(y1) + Ω(x1) + 4dC2,1
1 + · · ·+ 4dC2,`−1

1 + 3dC2,`
1 ,

Θ(C`2,Ω)(y2) = Ω(y2) + 3Ω(x1) + 5dC2,1
1 + · · ·+ 5dC2,`−1

1 + 2dC2,`
1 ,

Θ(C`2,Ω)(y3) = Ω(y3) + 5Ω(x1) + 6dC2,1
1 + · · ·+ 6dC2,`−1

1 + dC2,`
1 .

5.2 Decision procedure for generalized lassos

In this section, we present a decision procedure for SNTs whose transition graphs are
generalized lassos. From Proposition 6, we know that the coefficients containing the
cycle counter variable ` in Θ(C`,Ω)(yj) can be non-zero when λCj = 1. The non-zero
coefficients may propagate to the output expression. In such a case, because the SNTs
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(cur > x1 ∧ cur 6= ., x1 := cur,
y1 := y1 + x1 + 3cur,
y2 := y2 + 3x1 + 2cur,
y3 := y3 + 5x1 + cur)

q0 q1

(cur = ., ∅)

q2

(cur = x1 ∧ cur 6= ., ∅)

(cur < x1 ∧ cur 6= .,
y1 := y1 + 4x1 + cur,
y2 := y2 + 2x1 + 2cur,
y3 := 3cur)

O(q2) = y1 − 2y2 + y3

(cur 6= ., x1 := cur,
y1, y2, y3 := cur)

C1

C2

C3
H

Fig. 4. The SNT S ′
max: Extending Smax with data variables

are “transition-enabled” (i.e. for any sequence of transitions, a corresponding run ex-
ists), intuitively, one can pick a run corresponding to a very large ` so that it dominates
the value of the output expression and makes the output non-zero. In the decision pro-
cedure we are going to present, we first check if the handle of the generalized lasso
produces a non-zero output in Step I. We then check in Step II the coefficients contain-
ing ` in the output expression is non-zero. If this does not happen, then we show in Step
III that the non-zero ouput problem of SNTs can be reduced to a finite state reachability
problem and thus can be easily decided.

Before presenting the decision procedure, we introduce some notations. Let e be an
expression consisting of symbolic values Ω(z) for z ∈ X ∪ Y and variables d1, . . . , ds
corresponding to the values of the input data word. More specifically, let e := µ0 +
µ1Ω(z1)+· · ·+µk+lΩ(zk+l)+ξ1d1+· · ·+ξsds, such that µ0, µ1, . . . , µk+l, ξ1, . . . , ξs
are expressions containing only constants and cycle counter variables. Then we call µ0

the constant atom, µiΩ(zi) theΩ(zi)-atom for i ∈ [k+ l], and ξjdj the dj-atom for j ∈
[s] of the expression e. Moreover, µ1, . . . , µk+l, ξ1, . . . , ξs are called the coefficients
and Ω(z1), . . . , Ω(zk+l), d1. . . . , ds the subjects of these atoms. A non-constant atom
is said to be nontrivial if its coefficient is not identical to zero.

In the rest of this subsection, we assume that the transition graph of S comprises

a handle H = q0
(g1,η1)−−−−→ q1 . . . qm−1

(gm,ηm)−−−−−→ qm, a collection of simple cycles
C1, . . . , Cn such that qm is the unique state shared by each pair of distinct cycles from

{C1, . . . , Cn}, and a .-transition qm
(cur=.,η)−−−−−−→ qm+1. Moreover, without loss of gen-

erality, we assume that O(qm+1) = a0 + a1x1 + · · · + akxk + b1y1 + · · · + blyl,
and O(q) is undefined for all the other states q. For convenience, we define O(qm)
by replacing simultaneously z with η(z) in O(qm+1), for each z ∈ dom(η). Suppose
O(qm) = a′0 + a′1x1 + · · · + a′kxk + b′1y1 + · · · + b′lyl. Then for the non-zero output
problem, we can ignore the .-transition and use O(qm) directly.

A cycle scheme s is a path C`1i1 C
`2
i2
. . . C`tit such that i1, . . . , it ∈ [n], `1, . . . , `t ≥ 1,

and for each j ∈ [t− 1], ij 6= ij+1. Intuitively, s is a path obtained by first iterating Ci1
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for `1 times, then Ci2 for `2 times, and so on. From Proposition 6 and Corollary 2, a
symbolic valuation Θ(s,Ω) can be constructed to summarize the computation of S on s.

Lemma 1. Suppose s = C`1i1 C
`2
i2
. . . C`tit is a cycle scheme, and Ω is a symbolic val-

uation representing the initial values of the control and data variables such that for

each xi, xj ∈ X , Ω(xi) = Ω(xj) iff i ∼qm j. For all j′ ∈ ICi1pe ∩ rng(πqm), let rj′

be the largest number r ∈ [t] such that j′ ∈
⋂
s∈[r] I

Cis
pe , i.e., xj′ remains persistent

when traversing C`1i1 C
`2
i2
. . . C

`r
j′

ir
j′

. Then for each j ∈ [l] and j′ ∈ ICi1pe ∩ rng(πqm), the

coefficient of the Ω(xj′)-atom in Θ(s,Ω)(yj) is

e+
∑

s1∈[rj′ ]

(
1 + λ

Cis1
j + · · ·+ (λ

Cis1
j )`s1−1

)
α
Cis1
j,(πqm )−1(j′)

∏
s2∈[s1+1,t]

(
λ
Cis2
j

)`s2
,

where (1) e=0 when rj′= t and (2) e = (λ
Cis
j )`s−1α

Cis
j,(πqm )−1(j′)

∏
s′∈[s+1,t]

(
λ
Ci
s′

j

)`s′
with s = rj′ + 1 when rj′ < t.
The constant atom of Θ(s,Ω)(yj) is

∑
s1∈[t]

(
1 + λ

Cis1
j + · · ·+ (λ

Cis1
j )`s1−1

)
ε
Cis1
j

∏
s2∈[s1+1,t]

(
λ
Cis2
j

)`s2
Moreover, for all j ∈ [l], in Θ(s,Ω)(yj), only the constant atom and the coefficients of

the Ω(xj′)-atoms with j′ ∈ ICi1pe ∩ rng(πqm) contain a subexpression of the form µs`1
for some µs ∈ Z.

Notice that above, λ
Cis1
j ∈ {0, 1} for j ∈ [l] and s1 ∈ [t]. Hence the value of

(1 + λ
Cis1
j + · · · + (λ

Cis1
j )`s1−1) can only be 1 or `s1 and

(
λ
Cis2
j

)`s2
∈ {0, 1}.

Therefore, both the constant atom and the coefficients of the Ω(xj′)-atoms with j′ ∈
I
Ci1
pe ∩ rng(πqm) can be rewritten to the form of c0 + c1`1 + c2`2 + · · · + ct`t for
c0 . . . ct ∈ Z. Note that some of c0 . . . ct might be zero.

Step I: We are ready to present the decision procedure. At first, we observe that after
traversing H with the initial values of the variables given by some valuation Ω0, for
each j′ ∈ IHtr , the value of the control variable xj′ becomes dH

πHtr(j
′)

, more formally,

Θ(H,Ω0)(xj′) = dH
πHtr(j

′)
.

In Step I, we check if JO(qm)KΘ(H,Ω0) is not identical to zero. This can be done
by checking if the constant-atom or the coefficient of some non-constant atom of the
output expression JO(qm)KΘ(H,Ω0) is not identical to zero.

Step I. Decide whether JO(qm)KΘ(H,Ω0) is not identical to zero. If the answer is yes,
then the decision procedure terminates and returns the answer true. Otherwise, go
to Step II.
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Complexity analysis of Step I. SinceΘ(H,Ω0) can be computed in polynomial time from
H , it follows that Step I can be done in polynomial time.

Example 4. Let S ′max be the SNT in Example 3. Since q1
(cur=.,∅)−−−−−−→ q2, we can define

O(q1) := a′0 + a′1x1 + b′1y1 + b′2y2 + b′4y3 = O(q2) = y1 − 2y2 + y3. The handle H
comprises exactly one transition. Thus rH = 1 and

JO(q1)KΘ(H,Ω0) = dH1 − 2dH1 + dH1 = 0.

Therefore, the handle H does not produce a non-zero output.

Step II: The goal of Step II is to show that

– either for each cycle scheme s, all subexpressions in JO(qm)K
Θ(s,Θ(H,Ω0)) contain-

ing the cycle counter variables are identical to zero and hence can be ignored,
– or there exists a cycle scheme s such that JO(qm)K

Θ(s,Θ(H,Ω0)) is not identical to
zero.

Let s = C`1i1 C
`2
i2
. . . C`tit be a cycle scheme. From Lemma 1, for each j′ ∈ I

Ci1
pe ∩

rng(πqm) and symbolic valuation Ω, the only subexpression containing `1 in the coef-
ficient of Ω(xj′)-atom of JO(qm)KΘ(s,Ω) is∑

1≤j≤l
b′j

(
(λ
Ci2
j )`2 . . . (λ

Cit
j )`t

)(
1 + λ

Ci1
j + · · ·+ (λ

Ci1
j )`1−1

)
α
Ci1
j,(πqm )−1(j′)

. (∗)

Since λCi1j , λ
Ci2
j , . . . , λ

Cit
j ∈ {0, 1}, the expression (∗) can be rewritten as µs,(i1,j′)`1+

νs,(i1,j′) for some integer constants µs,(i1,j′) and νs,(i1,j′).
The only subexpression containing `1 in the constant atom of JO(qm)KΘ(s,Ω) is∑

1≤j≤l
b′j

(
(λ
Ci2
j )`2 . . . (λ

Cit
j )`t

)(
1 + λ

Ci1
j + · · ·+ (λ

Ci1
j )`1−1

)
ε
Ci1
j . (∗∗)

The expression (∗∗) can be rewritten as µs,(i1,0)`1+νs,(i1,0) for some integer constants
µs,(i1,0) and νs,(i1,0).

We are ready to present Step II.

Step II. For each i1 ∈ [n], check all cycle scheme s = C`1i1 Ci2 . . . Cit such that
i2, . . . , it are mutually distinct. There are only finitely many this kind of cycle
schemes. If one of the following constraints is satisfied, then return true.

1. There is j′ ∈ ICi1pe ∩ rng(πqm) such that µs,(i1,j′) 6= 0.
2. µs,(i1,0) 6= 0.

If the decision procedure has not returned yet, then go to Step III.

Complexity analysis of Step II. Since i1, . . . , it are mutually distinct, the number of
cycle schemes s = C`1i1 Ci2 . . . Cit in Step II is exponential in the number of cycles in
the generalized lasso. Once the cycle scheme s is fixed, the two constraints in Step II
can be decided in polynomial time. Therefore, the complexity of Step II is exponential
in the number of simple cycles in the generalized lasso.
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Example 5. Let S ′max be the SNT in Example 4. We need consider the following cycle
schemes, C`11 , C`12 , C`11 C2, C`12 C1, C`11 C2C1, C`12 C1C2. We use s1 = C`11 , s2 =
C`11 C2, and s3 = C`11 C2C1 to illustrate Step II.

– In JO(q1)KΘ(s1,Ω) , the subexpression containing `1 in the coefficient of the Ω(x1)-
atom is ∑

1≤j≤3
b′j

(
1 + λC1

j + · · ·+ (λC1
j )`1−1

)
αC1
j,1

= 1× `1 × 4 + (−2)× `1 × 2 + 1× 1× 0 = 0.

– In JO(q1)KΘ(s2,Ω) , the subexpression containing `1 in the coefficient of the Ω(x1)-
atom is ∑

1≤j≤3
b′j λ

C2
j

(
1 + λC1

j + · · ·+ (λC1
j )`1−1

)
αC1
j,1

= 1× 1× `1 × 4 + (−2)× 1× `1 × 2 + 1× 1× 1× 0 = 0.

– In JO(q1)KΘ(s3,Ω) , the subexpression containing `1 in the coefficient of the Ω(x1)-
atom is ∑

1≤j≤3
bj (λ

C2
j λC1

j )
(
1 + λC1

j + · · ·+ (λC1
j )`1−1

)
αC1
j,1

= 1× 1× `1 × 4 + (−2)× 1× `1 × 2 + 1× 0× 1× 0 = 0.

From Example 3, we know that if s = C`12 , C
`1
2 C1, or C`12 C1C2, then for each j =

1, 2, 3, the coefficient of the Ω(x1)-atom in Θ(s,Ω)(yj) does not contain the cycle
counter variable `1. Therefore, the coefficient of the Ω(x1)-atom in JO(q1)KΘ(s,Ω) does
not contain `1 as well. From this, we conclude that with S ′max as the input, the decision
procedure does not return in Step II and it will go to Step III.

In the following, we present the arguments for the correctness of Step II. Suppose
s = C`1i1 Ci2 . . . Cit .

– If there exists j′ ∈ ICi1pe ∩ rng(πqm) and µs,(i1,j′) 6= 0. Then from the cycle scheme
s = C`1i1 Ci2 . . . Cit , we can assign a sufficiently large value s to `1 so that the
coefficient of the Ω(xj′)-atom in JO(qm)KΘ(Hs,Ω0) , which is equal to the sum of
`1µs,(i1,j′) and some constant, becomes non-zero. The guards and assignments in
the path HCsi1Ci2 . . . Cit enforce a preorder over the subjects of those nontrivial
non-constant atoms. Pick one of the nontrivial non-constant atoms with a maximal
subject w.r.t. the preorder. Since the subject is maximal, it can be assigned an ar-
bitrarily large number so that the corresponding atom dominates JO(qm)KΘ(Ps,Ω0) .
This is sufficient to make JO(qm)KΘ(Hs,Ω0) non-zero.

– Otherwise, if JO(qm)KΘ(Hs,Ω0) contains some other nontrivial non-constant atoms,
then we can apply a similar argument as above and conclude that JO(qm)KΘ(Hs,Ω0)

can be made non-zero.
– On the other hand, if JO(qm)KΘ(Hs,Ω0) contains no nontrivial non-constant atoms,

but µs,(i1,0) 6= 0, then we can let `1 sufficiently large to make the expression
JO(qm)KΘ(Hs,Ω0) non-zero.
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Therefore, when Step II returns true, that is, at least one of the two conditions in Step
II holds, then we are able to conclude that there must be an input data word w and an
initial valuation ρ0 such that Sρ0(w) 6∈ {⊥, 0}.

If Step II does not return true, we show below that for all cycle schemes s1 =

C`1i1 C
`2
i2
. . . C

`t1
it1

with i1, i2, . . . , it1 ∈ [n], all the subexpressions containing cycle counter
variables `1, . . . , `t1 in JO(qm)K

Θ(s1,Θ
(H,Ω0)) are identical to zero and hence can be

removed. Let i′2 . . . i
′
t2 be the sequence obtained from i2 . . . it1 by keeping just one

copy for each duplicated index therein. In Step II we already checked the cycle scheme
s2 = C`1i1 Ci′2 . . . Ci′t2

. Step II guarantees that all the subexpressions containing `1 in
JO(qm)K

Θ(s2,Θ
(H,Ω0)) are identical to zero and hence can be removed. Because for all

j ∈ [l], λ
C1

j , . . . , λ
Cn

j ∈ {0, 1}, (λCi2j )`2 . . . (λ
Cit1
j )`t1 = λ

Ci′2
j . . . λ

Ci′t2
j . We proved

that the (∗) and (∗∗) style expressions are equivalent in both JO(qm)K
Θ(s1,Θ

(H,Ω0)))

and JO(qm)K
Θ(s2,Θ

(H,Ω0))) . Hence we can also remove all subexpressions containing `1
from JO(qm)K

Θ(s1,Θ
(H,Ω0))) , without affecting its value. Those subexpressions contain-

ing `2 can also be removed by considering the cycle scheme s3 = C`2i2 Ci′′3 . . . Ci′′t3
and

applying a similar reasoning, where the sequence i′′3 . . . i
′′
t3 is obtained from i3 . . . it1 ,

similarly to the construction of i′2 . . . i
′
t2 from i2 . . . it1 . The same applies to all other cy-

cle counter variables `3, . . . , `t1 . For each yj ∈ Y , we use the notation Θ(s1,Ω)−(yj) to
denote the expression obtained by removing from the constant atom and coefficients of
the non-constant atoms of Θ(s1,Ω)(yj) all subexpressions containing the cycle counter
variables.

Lemma 2. Suppose that the decision procedure has not returned true after Step II. For
each cycle scheme s, let f = JO(qm)K

Θ(s,Θ(H,Ω0)) and f ′ = JO(qm)K
Θ(s,Θ(H,Ω0))

− . For
all valuations ρ, JfKρ 6= 0 iff Jf ′Kρ 6= 0.

Step III: From Proposition 6, we can observe that for each cycleCi (where 1 ≤ i ≤ n),
the expression Θ(C`i ,Θ

(H,Ω0))−(yj) for yj ∈ Y is of one of the the following forms.

– If λCij = 0, then Θ(C`i ,Θ
(H,Ω0))−(yj) = Θ(C`i ,Θ

(H,Ω0))(yj).

– If λCij = 1, then

Θ(C`i ,Θ
(H,Ω0))−(yj) = Θ(H,Ω0)(yj) +

∑
j′∈[sqm ]\rng(πCipe )

αCij,j′Ω(xπqm (j′)) +

∑
j′∈rng(πCitr )

∑
s∈[`−1]

βCij,j′ + ∑
j′′∈(πCitr )−1(j′)∩rng(πqm )

αCi
j,(πqm )−1(j′′)

 dCi,sj′ +

∑
j′∈[rCi ]\rng(πCitr )

∑
s∈[`−1]

βCij,j′d
Ci,s
j′ +

∑
j′∈[rCi ]

βCij,j′d
Ci,`
j′ .

Note that if λCij = 1, then the expressions containing the cycle counter variable `, e.g.

`εCij , are removed from Θ(C`i ,Θ
(H,Ω0))−(yj).

We define the abstraction of Θ(s,Θ(H,Ω0))− , denoted by Abs(Hs), as the union of
the following three sets of tuples:
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– the tuple for the constant atom:
{(

0,
(
ε
(s)−

1 + λs1ε
H
1 , . . . , ε

(s)−

l + λsl ε
H
l

))}
,

– tuples for the control variable atoms: {(j′, (cj′,1, . . . , cj′,l)) | j′ ∈ [k]}, where cj′,j
is the coefficient of the Θ(s,Θ(H,Ω0))(xj′)-atom in Θ(s,Θ(H,Ω0))

−
(yj) for j ∈ [l],

– tuples for the other atoms: {(k + 1, (c1, . . . , cl))}, where (c1, . . . , cl) is the vec-

tor of coefficients of the d′-atom in (Θ(s,Θ(H,Ω0))
−
(yj) for all j ∈ [l] and d′ 6∈

{Θ(s,Θ(H,Ω0))(xj′) | xj′ ∈ X}.

Note that in Abs(Hs), if j1, j2 ∈ [k] and j1 ∼qm j2, then we have Θ(s,Θ(H,Ω0))(xj1) =

Θ(s,Θ(H,Ω0))(xj2). Therefore, (cj1,1, . . . , cj1,l) = (cj2,1, . . . , cj2,l).
Let A =

⋃
{Abs(Hs) | s a cycle scheme}. Then A can be constructed inductively

as follows, until Ai+1 = Ai.

1. A0 = {Abs(HC1), . . .Abs(HCn)},
2. For i ≥ 0, Ai+1 is the union of Ai and the set of Λ′ such that Λ′ is constructed

from some Λ ∈ Ai and some cycle Ci′ (where i′ ∈ [n]) as follows. At first we

observe that ∼qm⊆ (I
Ci′
pe × ICi′pe ) ∪ (I

Ci′
tr × I

Ci′
tr ). The argument is as follows: If

j′ ∈ I
Ci′
tr and j′′ ∈ I

Ci′
pe , then xj′ is assigned a fresh value and xj′′ is assigned

the initial value of some control variable, thus xj′ and xj′′ are not equivalent w.r.t.
∼qm .

– Suppose (0, (c1, . . . , cl)) ∈ Λ. Then (0, (c′1, . . . , c
′
l)) ∈ Λ′, where for each

j ∈ [l], if λCi′j = 0, then c′j = ε
Ci′
j , otherwise, c′j = cj (in this case, the

expression εCi′j is removed).
– For each j′ ∈ [k], suppose (j′, (cj′,1, . . . , cj′,l)) ∈ Λ, do the following.
• If j′ ∈ ICi′pe , then (j′, (c′j′,1, . . . , c

′
j′,l)) ∈ Λ′, where for each j ∈ [l],

∗ if λCi′j = 0, then c′j′,j = α
Ci′

j,π
C
i′

pe (j′)
,

∗ otherwise, c′j′,j = cj′,j (in this case, the expressions αCi′
j,π

C
i′

pe (j′)
is

removed).
• If j′ ∈ ICi′tr , then

(k + 1, (c′j′,1, . . . , c
′
j′,l)),

(
j′,

(
β
Ci′

1,π
C
i′

tr (j′)
, . . . , β

Ci′

l,π
C
i′

tr (j′)

))
∈ Λ′,

where for each j ∈ [l], if λCi′j = 0, then c′j′,j = α
Ci′
j,(πqm )−1(j′′0 )

, otherwise,

c′j′,j = cj′,j + α
Ci′
j,(πqm )−1(j′′0 )

, where j′′0 = min({j′′ ∈ [k] | j′′ ∼qm j′}).
In this case, after going through Ci′ , the control variable xj′ stores a fresh
value and the initial value of xj′ is not stored in any control variable, thus
the (j′, . . . )-tuple is updated and a (k+1, . . . )-tuple is added for the initial
value of xj′ .

– For each tuple (k + 1, (c1, . . . , cl)) ∈ Λ, we have (k + 1, (c′1, . . . , c
′
l)) ∈ Λ′,

where for each j ∈ [l], if λCi′j = 0, then c′j = 0, otherwise, c′j = cj . In

addition, for each j′ ∈ [rCi′ ] \ rng(πCi′tr ), (k + 1, (β
Ci′
1,j′ , . . . , β

Ci′
l,j′ )) ∈ Λ′.
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By a simple analysis on the inductive computation of A , we can show that all
the tuples (j′, (c1, . . . , cl)) occurring in A satisfy that c1, . . . , cl are from a bounded
domain U , which is stated in the following lemma.

Lemma 3. Suppose that the decision procedure has not returned yet after Step II. For
all cycle scheme s and yj ∈ Y , the constant atom and the coefficients of all non-constant

atoms in Θ(s,Θ(H,Ω0))
−
(yj) are from a finite set U ⊂ Z comprising the constant atom

and the coefficients of the non-constant atoms in the expression Θ(C
`i1
i1

,Θ(H,Ω0))−(yj)

or Θ(Ci1Ci2 ,Θ
(H,Ω0))−(yj) for i1, i2 ∈ [n] such that i1 6= i2 and `i1 ∈ {1, 2}.

Note that although the set U can be exhausted by the cycle schemes stated in
Lemma 3, the inductive computation of A may not be.

Step III. We first construct the set A . Then for each Λ ∈ A , do the following.

1. If (0, (c0,1, . . . , c0,l)) ∈ Λ such that a′0 + b′1c0,1 + · · ·+ b′lc0,l 6= 0, then return
true.

2. If there is j′ ∈ [k] such that (
∑

j′′∼qm j′
a′j′′) + b′1cj′,1 + · · · + b′lcj′,l 6= 0, then

return true, where (j′, (cj′,1, . . . , cj′,l)) ∈ Λ.
3. If there is (k+1, (c1, . . . , cl)) ∈ Λ such that b′1c1 + · · ·+ b′lcl 6= 0, then return

true.

If the decision procedure has not returned yet, return false.

In order to reduce the size of A , we can restructure A into a pair A ′ = (Ξ,∆) as
follows, without affecting the computation in Step III.

1. Initially, let Ξ = ∆ := ∅.
2. For each Λ ∈ A , do the following: Let Λ′ := Λ \ {(k + 1, (c1, . . . , cl)) ∈ Λ}. In

addition, let Ξ := Ξ ∪ {Λ′} and ∆ := ∆ ∪ {(k + 1, (c1, . . . , cl)) ∈ Λ}.

Complexity analysis of Step III. The size of the set U is polynomial in the size of gen-
eralized lasso. Then size of Ξ is at most exponential in kl and the size of ∆ is at most
exponential in l. Therefore, the size of A ′ is at most exponential in kl and the compu-
tation of A ′ takes exponential time in the worst case. The three conditions in Step III
can be checked in time polynomial over the size of A ′. In summary, the complexity of
Step III is exponential in kl, the product of the number of control and data variables.

Example 6. Let S ′max be the SNT in Example 5. Then

Θ(C`1,Ω)−(y1) = Ω(y1) + 0Ω(x1) + dC1,1
1 + · · ·+ dC1,`

1 ,

Θ(C`1,Ω)−(y2) = Ω(y2) + 0Ω(x1) + 2dC1,1
1 + · · ·+ 2dC1,`

1 ,

Θ(C`1,Ω)−(y3) = 3dC1,`
1 ,

and Θ(C`2,Ω)−(yj) = Θ(C`2,Ω)(yj) for each j = 1, 2, 3. The computation of A starts
with the set A0 = {Abs(HC1),Abs(HC2)}. We illustrate how to compute Abs(HC1)
and Abs(HC2).
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– Since none of Θ(H,Ω0)(yj)’s , Θ(C`1,Ω)−(yj)’s and Θ(C`2,Ω)−(yj)’s contains con-
stant atoms, we know that (0, (0, 0, 0)) occurs in Abs(HC1) and Abs(HC2).

– After going through H , each of y1, y2, y3 is assigned the first data value, and after
going through HC1, x1 holds the first data value. From Θ(C`1,Ω)−(yj)’s mentioned

above, we know that each ofΘ(C1,Θ
(H,Ω0)− )(y1) andΘ(C1,Θ

(H,Ω0)− )(y2) holds one

copy of the first data value, and Θ(C1,Θ
(H,Ω0)− )(y3) contains no copies of the first

data value. Therefore, (1, (1, 1, 0)) occurs in Abs(HC1). Similarly, since x1 holds
the second data value after going through HC2, we have (1, (3, 2, 1)) occurs in
Abs(HC2).

– In addition, by a simple calculation, we know that Abs(HC1) contains another
tuple (2, (1, 2, 3)) and Abs(HC2) contains another tuple (2, (2, 4, 6)).

To summarize, we have Abs(HC1) = {(0, (0, 0, 0)), (1, (1, 1, 0)), (2, (1, 2, 3))} and
Abs(HC2) = {(0, (0, 0, 0)), (1, (3, 2, 1)), (2, (2, 4, 6))}. Then starting from A0, we
compute A1 = A0 ∪ {A (HCi1Ci2) | i1, i2 = 1, 2}, and so on. We illustrate how to
compute Abs(HC1C2) from Abs(HC1).

– Since (0, (0, 0, 0)) occurs in Abs(HC1) and λC2
1 = λC2

2 = λC2
3 = 1, we know that

(0, (0, 0, 0)) ∈ Abs(HC1C2).
– From 1 ∈ IC2

tr and λC2
1 = λC2

2 = λC2
3 = 1, we have (2, (1 + αC2

1,1, 1 + αC2
2,1, 0 +

αC2
3,1)) = (2, (1+1, 1+3, 0+5)) = (2, (2, 4, 5)) ∈ Abs(HC1C2). In addition, we

have (1, (βC2
1,1, . . . , β

C2
3,1)) = (1, (3, 2, 1)) ∈ Abs(HC1C2).

– Since (2, (2, 4, 6)) occurs in Abs(HC1) and λC2
1 = λC2

2 = λC2
3 = 1, we have

(2, (2, 4, 6)) ∈ Abs(HC1C2). Moreover, because [rC2 ] \ rng(πC2
tr ) = ∅, no other

tuples are added into Abs(HC1C2).

In summary,

Abs(HC1C2) = {(0, (0, 0, 0)), (1, (3, 2, 1)), (2, (2, 4, 5)), (2, (2, 4, 6))}.

From the fact that (1, (1, 1, 0)) occurs in Abs(HC1), we know that a′1 + b′1 × 1 + b′2 ×
1+ b′3× 0 = 0+ 1× 1+ (−2)× 1+ 1× 0 = −1 6= 0. Therefore, Step III returns true
and a non-zero output can be produced by following the path HC1.

5.3 Decision procedure for SNTs

We generalize the decision procedure for the special case that the transition graphs of
SNTs are generalized lassos to the full class of SNTs. We define a generalized multi-
lasso as m = H1(C1,1, . . . , C1,n1

)H2(C2,1, . . . , C2,n2
) . . . Hr(Cr,1, . . . , Cr,nr )Hr+1

s.t. (1) for each s ∈ [r],Hs = qs,1
(g2,η2)−−−−→ qs,2 . . . qs,ms−1

(gms ,ηms )−−−−−−−→ qs,ms is a gener-

alized lasso, Hr+1 = qr,mr
(cur=.,η′)−−−−−−→ q′, (2) for 1 ≤ s < s′ ≤ r, Hs(Cs,1, . . . , Cs,ns)

and Hs′(Cs′,1, . . . , Cs′,ns′ ) are state-disjoint, except the case that when s′ = s + 1,
qs,ms = qs′,1, and (3) q1,1 = q0.
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Since the transition graph of S can be seen as a finite collection of generalized
multi-lassos, in the following, we shall present the decision procedure by showing how
to decide the non-zero output problem for generalized multi-lassos.

In the following, we fix a generalized multi-lasso
m = H1(C1,1, . . . , C1,n1)H2(C2,1, . . . , C2,n2) . . . Hr(Cr,1, . . . , Cr,nr )Hr+1,

and assume without loss of generality thatO(q′) = a0+a1x1+· · ·+akxk+b1y1+· · ·+
blyl andO(q′′) is undefined for every other state q′′ in m. For convenience, we adapt the
output functionO a bit to defineO(qr,mr ) := a′0+a

′
1x1+· · ·+a′kxk+b′1y1+· · ·+b′lyl,

where a′0 + a′1x1 + · · ·+ a′kxk + b′1y1 + · · ·+ b′lyl is obtained from O(q′) by replacing
simultaneously each z ∈ dom(η′) with η′(z).

Step I′: We do the same analysis as in Step I for the path H1 . . . Hr.

Step II′: Let s ∈ [1, r−1]. In order to analyze the set of cycles C = {Cs,1, . . . , Cs,ns},
next we show how to summarize the effect of the path Hs+1 . . . Hr on the values of the
variables in the state qs,ms by extending the output function and defining O(qs,ms )
(note that qs,ms is the unique state shared by all those cycles in C). Suppose that
JO(qr,mr )KΘ(Hs+1...Hr,Ω) = a′′0+a

′′
1Ω(x1)+· · ·+a′′kΩ(xk)+b

′′
1Ω(y1)+· · ·+b′′l Ω(yl)+

e, where Ω(x1) . . . Ω(xk) and Ω(y1) . . . Ω(yl) represent the values of x1 . . . xk and
y1 . . . yl in the state qs,ms , and e is a linear combination of the variables that repre-
sent the data values introduced when traversing Hs+1 . . . Hr. Then we let O(qs,ms) :=
a′′0 + a′′1x1 + · · ·+ a′′kxk + b′′1y1 + · · ·+ b′′l yl.

Step II′. For each s ∈ [r], s′ ∈ [ns], and each cycle scheme s =
C`1s,s′Ci2 . . . Cit such that Ci2 . . . Cit ∈ {Cs,1, . . . , Cs,ns , . . . , Cr,1, . . . , Cr,nr}
and Ci2 . . . Cit are mutually distinct, we perform an analysis of the expression
JO(qs,ms)KΘ(s,Θ(H1...Hs,Ω0)) , in a way similar to Step II. If the decision procedure
does not return during the analysis, then go to Step III′.

Intuitively, in Step II′, during the analysis of the cycle scheme s = C`1s,s′Ci2 . . . Cit ,
the effect of the paths Hs+1, . . . ,Hr and the cycles Ci2 , . . . , Cit on the coefficients
of atoms which contain the cycle counter variable `1, is described by the expressions

λ
Hs+1

j . . . λHrj λ
Ci2
j . . . λ

Cit
j for j ∈ [l]. Since the output expression O(qs,ms) defined

above has already taken into consideration the expressions λHs+1

j . . . λHrj for j ∈ [l], in
Step II′, we can do the analysis as if we have a generalized lasso where the handle is
H1 . . . Hs, the collection of cycles is {Cs,1, . . . , Cs,ns , . . . , Cr,1, . . . , Cr,nr}, with the
output expression O(qs,ms).

Step III′: After Step II′, if the decision procedure has not returned yet, then similar to
Lemma 3, the following hold.

– For each s ∈ [r] and each path s = H1s1H2 . . . Hsss such that for each s′ ∈ [s],
ss′ is a cycle scheme over the collection of cycles {Cs′,1, . . . , Cs′,ns′}, it holds that

the constant atom and all the coefficients of the non-constant atoms inΘ(s,Ω0)
−
(yj)

are from a bounded domain U .
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– Moreover, an abstraction of s, denoted by Abs(s), can be defined, so that A , which
is the set of Abs(s) for the paths s = H1s1H2 . . . Hsss (where s ∈ [r]), can be
computed effectively from H1, C1,1, . . . , C1,n1

, H2, . . . ,Hr, Cr,1, . . . , Cr,nr .

Step III′. We apply the same analysis to A as in Step III. If the procedure does not
return during the analysis, then return false.

Complexity analysis of Step I′-III′. The complexity of Step I′ is polynomial in the the
maximum length of generalized multi-lassos in S. The complexity of Step II′′ is ex-
ponential in the maximum number of simple cycles in a generalized multi-lasso. The
complexity of Step III′ is exponential in the number of control and data variables in
S. In total, the complexity of the decision problem for the non-zero output problem of
normalized SNTs is exponential in the number of control and data variables, as well as
in the number of simple cycles, in the worst case.

6 Extensions

int avg() {
sum:=cur;
cnt:=0;next;
loop{
sum+=cur;
cnt+=1;
next;}
ret sum/cnt;}

int MAD() {
sum:=cur;cnt:=0;next;
loop{sum+=cur;cnt+=1;next;}
avg:= sum/cnt;mad:=0;init;
loop{
if(cur<avg){mad+=avg-cur;}
else{mad+=cur-avg;}next;}
ret mad/cnt;}

int SD() {
sum:=cur;cnt:=0;next;
loop{sum+=cur;cnt+=1;next;}
avg:= sum/cnt;sd:=0;init;
loop{
sd+=(cur-avg)*(cur-avg);next;
}
ret SQRT(sd/cnt);}

Fig. 5. More Challenging Examples of Reducers Performing Data Analytics Operations

In this section, we discuss some extensions of our approach to deal with the more
challenging examples. For cases with multiplication, division, or other more compli-
cated functions at the return point, e.g., the avg program, we can model them as an
uninterpreted k-ary function and verify that all k parameters of the uninterpreted func-
tions remain the same no matter how the input is permuted, e.g., the avg program al-
ways produces the same sum and cnt for all permutation of the same input data word.
This is a sound but incomplete procedure for verifying programs of this type. Never-
theless, it is not often that a practical program for data analytics produces, e.g., 2q/2r
from some input and q/r for its permutation. Hence this procedure is often enough for
proving commutativity for real world programs.

The MAD (Mean Absolute Deviation) program is a bit more involved. Beside the
division operator / that also occurs in the avg example, it uses a new iterator operation
init, which resets cur to the head of the input data word. The strategy to verify this
program is to divide the task into two parts: (1) ensure that the value of avg is indepen-
dent of the order of the input, (2) treat avg as a control variable whose value is never
updated and then check if the 2nd half of the program (c.f., Fig. 6) is commutative.
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int MAD2() {
avg:= cur;next;
loop{
if(cur<avg){mad+=avg-cur;}
else{mad+=cur-avg;}
next;}
ret mad/cnt;}

Fig. 6. The 2nd half of MAD

We handle the division at the end of the pro-
gram in Fig. 6 in the same way as we did for the
avg program. The guarantee we obtain after the
corresponding SNT is checked to be commutative
is that the program outputs the same value for any
value of avg and any permutation of the input
data word.

The SD (Standard Deviation) program is even
more challenging. The main difficulty comes from
the use of multiplication in the middle of the pro-
gram (instead of at the return point). In order to have a sound procedure to verify this
kind of programs, we can extend the transitions of SNTs to include uninterpreted k-ary
functions. However, this is not a trivial extension and we leave it as future work.

7 Conclusion

The contribution of the paper is twofold. We propose a verifiable programming lan-
guage for reducers. Although it is still far away from a practical programming language,
we believe that some ideas behind our language (e.g., the separation of control variables
and data variables) would be valuable for the design of a practical reducer language. On
the other hand, we propose the model of streaming numerical transducers, a transducer
model over infinite alphabets. To our best knowledge, this is the first decidable au-
tomata model over infinite alphabets that allows linear arithmetics over the input values
and the integer variables. Although we required that the transition graphs of SNTs are
generalized flat, SNTs with such kind of transition graphs turn out to be quite powerful,
since they are capable of simulating reducer programs without nested loops, which is a
typical scenario of reducer programs in practice. At last, we would like to mention that
although we assumed the integer data domain, all the results obtained in this paper are
still valid when a dense data domain, e.g. the set of rational numbers, is assumed.
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A Formal Semantics of the Programming Language

Transitions Side Condition
(y := e; p, w, ρ) −→ (p, w, ρ′) ρ′ = ρ[JeKρ/y]
(y+= e; p, w, ρ) −→ (p, w, ρ′) ρ′ = ρ[Jy + eKρ/y]
(if (g){s1} [else {s2}]; p, w, ρ) −→ (s1; p, w, ρ) ρ |= g
(if (g){s1} [else {s2}]; p, w, ρ) −→ (s2; p, w, ρ) ρ 6|= g
(next; p, w, ρ) −→ (p, tl(w), ρ′) ρ′ = ρ[hd(w)/cur] if w 6= ε
(x := cur; p, w, ρ) −→ (p, w, ρ′) ρ′ = ρ[ρ(cur)/x]
(loop{s}; ret r, w, ρ) −→ (s; loop{s}; ret r, w, ρ)
(loop{s}; ret r, ε, ρ) −→ (ret r, ε, ρ)

Fig. 7. The Semantics of the Programming Language

Formally, the semantics of a program p in the programming language is defined as
a transition system in Fig. 7. Let p be a reducer program and w be an input data word.
Each configuration of the transition system is a triple (p′, w′, ρ), where p′ is a program,
w′ is a suffix of w, and ρ is a valuation over X+ ∪Y such that ρ(cur) = hd(w′) (where
if w′ = ε, then hd(w′) = ⊥). Let ρ0 denote a valuation which assigns each control and
data variable an initial value, and ρw be the valuation such that ρw(cur) = hd(w) and
ρw(z) = ρ0(z) for each z ∈ X ∪ Y . The initial configuration is (p, tl(w), ρw). We use
pρ0(w) to denote the output of p on w wrt. ρ0. Then pρ0(w) = d if there exists a path
from the initial configuration (p, w, ρw) to some return configuration (ret r, ε, ρr) such
that JrKρr = d. Otherwise, pρ0(w) = ⊥. Since the program is deterministic, i.e., given
an initial valuation ρ0, each input data word has at most one output, the semantics of p
is well-defined.

B Proofs in Section 4

Proposition 1. For each reducer program p, one can construct an equivalent SNT S
where the number of states and the maximum number of simple cycles in an SCC of the
transition graph are at most exponential in the number of branching statements in p.

Proof. We introduce a few notations first.
Let s be a loop-free program. An execution path π of s is a maximal path in the

control flow graph of s (here we use the standard definition of control flow graphs).
Each execution path π corresponds to a program sπ obtained by sequentially composing
the statements in π, where the statements assume(g) are used to represent the guards g.
Then s can be seen as a union of sπ , where π ranges over the execution paths of s.

Let p be a reducer program of the form s1; next; loop{s2; next; }; ret r. In the fol-
lowing, we show how to construct an SNT Sp to simulate p.

The loop body s2; next can be seen as a union of programs pπ for execution paths
π. We assume that no two distinct programs pπ share locations. We first transform
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the loop into a collection of state-disjoint (except the state l0, the entry point of the
loop) cycles Cπ , one for each program pπ . Let us focus on a program pπ . The set of
states in Cπ comprises the location l0 which is the entry point of the loop, and the
locations succeeding each next statement in pπ . Moreover, we identify the location
succeeding the last next statement and the entry point. The effect of the subprogram s′

between two successive next statements in the locations l1, l2 can be summarized into
a transition (l1, g

′, η′, l2) of pπ . This is possible due to the following two constraints:
1) the conditions g in the statements if (g){s′1} [else {s′2}] of pπ are the conjunctions
of cur � c and cur � x, 2) the assignments to the control variables are of the form
x := cur, and the assignments to the data variables are of the form y := e and y+ =e,
where e contains only control variables or cur. As a result of the two constraints, we
can trace the evolvement of the values of the control variables and simulate all the
statements assume(g) occurring in s′ by a guard g′ (obtained from these guards g by
some variable substitutions), moreover, the effects of all the assignments therein can
be summarized into an assignment function η′. Similarly, we can do the same for the
subprogram between the entry point and the first next statement of pπ .

In addition, each execution path of s1; next; can be simulated by a simple path of
transitions of Sp, which ends in the state l0, the entry point of the loop.

The return statement t is handled by adding a transition with guards of the form
cur = � from the state l0 to a sink state l′. The output function Op of Sp is defined as
follow: Op(l′) = r and O(l) is undefined for all the other states l.

Because in the program “s1; next; loop{s2; next; }; ret r”, the subprogram s2 con-
tains no occurrences of next;, we know that each nontrivial SCC in Sp comprises a
collection of self-loops around a unique state. Therefore, Sp is generalized-flat. ut

Proposition 2. The commutativity problem of SNTs is reduced to the equivalence prob-
lem of SNTs in polynomial time.

Proof. Suppose that S = (Q,X, Y, δ, q0, O) is an SNT such that X = {x1, . . . , xk}
and Y = {y1, . . . , yl}. Without loss of generality, we assume that the output of S is
defined only for data words of length at least two. We will construct two SNTs S1 and
S2 so that S is commutative iff S is equivalent to both S1 and S2.

– The intuition of S1 is that over a data word w = d1d2d3 . . . dn� with n ≥ 2, S1
simulates the run of S over d2d1d3 . . . dn�, that is, the data word obtained from w
by swapping the first two data values.

– The intuition of S2 is that over a data word w = d1d2d3 . . . dn� with n ≥ 2, S1
simulates the run of S over d2d3 . . . dnd1�, that is, the data word obtained from w
by moving the first data value to the end.

The correctness of this reduction follows from Proposition 1 in [3].
The construction of S1.

Intuitively, over a data wordw = d1d2d3 . . . dn�, we introduce an additional write-
once variable x′ to store d1, then simulates the run of S over d2d1d3 . . . dn� as follows:
When reading d2 in w, the variables are updated properly by letting x′ to represent d1
and cur to represent d2.



Commutativity of MapReduce: A Transducer-based Approach 29

Let q′0, q
′
1 6∈ Q and x′ 6∈ X . Then S1 = (Q∪{q′0, q′1}, X ∪{x′}, Y, δ1, q′0, O1) such

that

– O1(q
′
0) and O1(q

′
1) are undefined, and for each q ∈ Q, O1(q) = O(q),

– δ1 is constructed from δ as follows,
• each element of δ is an element of δ1,

• for each pair of transitions q0
(g1,η1)−−−−→ q1

(g2,η2)−−−−→ q2 in S, we add the transitions
(q′0, cur 6= �, η′1, q

′
1) and (q′1, g

′ ∧ cur 6= �, η′2, q2) into δ1. Intuitively, we use
x′ to store the value of d1 in η′1 and summarize the computation of η1 and η2
in η′2 with the information that d1 is stored in x′ and d2 is stored in cur.
Formally, η′1, g

′, η′2 are defined as follows.
∗ η′1(x′) = cur and η′1(z) is undefined for all z ∈ X ∪ Y . This implies that

after the transition (q′0, true, η
′
1, q
′
1), each variable z ∈ X ∪ Y still holds

the initial value.
∗ g′ = g1 ∧ g′2, where g′2 is obtained from g2 by replacing cur with x′, and

each x ∈ X ∩ dom(η1) with η1(x).
∗ For each z ∈ X ∪ Y , if z ∈ dom(η2), let ηr2(z) be the expression obtained

by replacing all occurrences of cur in η2(z) with x′, then η′2(z) is obtained
by substituting all occurrences of variables z′ ∈ dom(η1) in ηr2(z) with
η1(z

′).
∗ For each z ∈ X ∪ Y , if z /∈ dom(η2), then η′2(z) = η1(z).

The construction of S2.
Intuitively, over a data word w = d1 . . . dn�, we introduce an additional control

variable x′ to store d1, then simulates the run of S over d2 . . . dnd1: When reading � in
w, the variables are updated properly by letting x′ to represent d1.

Suppose q′0 6∈ Q and x′ 6∈ X . Then S2 = ({q′0} ∪Q,X ∪ {x′}, Y, δ2, q′0, O2) such
that

– O2(q
′
0) is undefined, and for each q ∈ Q, O2(q) = O(q),

– δ2 is constructed from δ as follows,
• each element of δ whose guard does not contain cur = � is an element of δ2,

• we add the transition q′0
(true,η′1)−−−−−→ q0 to δ2, where η′1(x

′) = cur and η′1(z) is
undefined for all z ∈ X ∪ Y .

• for each pair of transitions q1
(g1∧cur 6=�,η1)−−−−−−−−−→ q2

(g2∧cur=�,η2)−−−−−−−−−→ q3 in S, we add
the transition (q1, g

′, η′2, q3) into δ2. Intuitively, we use x′ to store the value of
d1 in η′1 and summarize the computation of η1 and η2 in η′2 with the information
that d1 is stored in x′.
Formally, g′, η′2 are defined in the following.
∗ g′ = g′1 ∧ g′2 ∧ (cur = �), where g′1 and g′2 are obtained from g1, g2 as

follows: g′1 is obtained from g1 by replacing all occurrences of cur with
x′, and g′2 is obtained from g2 by replacing each x ∈ X ∩ dom(η1) with
η1(x), then substituting all occurrences of cur with x′.

∗ For each z ∈ X∪Y , if z ∈ dom(η2), then η′2(z) is the expression obtained
from η2(z) by replacing all occurrences of variables z′ ∈ dom(η1) therein
with η1(z′) and then substituting all occurrences of cur with x′.
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∗ For each z ∈ X∪Y , if z ∈ dom(η1)\dom(η2), then η′2(z) is the expression
obtained from η1(z) by substituting all occurrences of cur with x′.

∗ For each z ∈ X ∪ Y , if z /∈ dom(η2) ∪ dom(η1), then η′2(z) is undefined.

It is easy to see that the size of both S1 and S2 are polynomial with respect to the
size of S . Note that S1 and S2 constructed above preserve the generalized-flatness and
mononicity of S , since the constructions do not modify the transitions in the nontrivial
SCCs of the transition graph. ut

Proposition 3. From two SNTs S1 and S2, an SNT S3 can be constructed in polynomial
time such that (S1)ρ0(w�) 6= (S2)ρ0(w�) for some data word w� and valuation ρ0
iff (S3)ρ0(w�) 6∈ {⊥, 0} for some data word w� and valuation ρ0.

Proof. Let S1 = (Q1, X1, Y1, δ1, q1,0, O1) and S2 = (Q2, X2, Y2, δ2, q2,0, O2) be two
monotone SNTs. Without loss of generality, we assume thatQ1∩Q2 = ∅,X1∩X2 = ∅,
and Y1 ∩ Y2 = ∅.

We first construct S as the product of S1 and S2. Specifically, S = (Q1×Q2, X1 ∪
X2, Y1 ∪ Y2, δ, (q1,0, q2,0), O), where

– δ comprises ((q1, q2), g1 ∧ g2, η1 ∪ η2, (q′1, q′2)) such that (q1, g1, η1, q′1) ∈ δ1,
(q2, g2, η2, q

′
2) ∈ δ2, and g1 ∧ g2 is satisfiable,

– for each (q1, q2) ∈ Q1 ×Q2,
• if O1(q1) is defined and O2(q2) is undefined or vice versa, then O((q1, q2)) =
1,
• otherwise, if bothO1(q1) andO2(q2) are defined, thenO((q1, q2)) = O1(q1)−
O2(q2),
• otherwise (both O1(q1) and O2(q2) are undefined), O((q1, q2)) is undefined.

From the aforementioned construction, it is easy to see that S1 and S2 are inequivalent
iff there is a data word w such that the output of S over w is non-zero. Moreover, since
both S1 and S2 are generalized-flat and monotone, we know that S is generalized-flat
and monotone as well. ut

Proposition 4. For each SNT S, the nonzero-output problem of S can be reduced to a
series of the nonzero-output problems of normalized SNTs S ′ in exponential time.

Proof. Suppose S = (Q,X, Y, δ, q0, O) is an SNT such that X = {x1, . . . , xk}. Our
goal is to reduce the nonzero-output problem of S to a series of nonzero-output prob-
lems of normalized SNTs S ′ = (Q′, X, Y, δ′, q′0, O

′).
Let TPOX denote the set of total preorders between control variables (Recall that

a total preorder over X is reflexive and transitive relation � over X such that for each
xi, xj ∈ X , either (xi, xj) ∈� or (xj , xi) ∈�). For �∈ TPOX and xi, xj ∈ X , xi is
said to be a�-successor of xj or xj is said to be a �-predecessor of xi, if (xj , xi) ∈�,
(xi, xj) 6∈�, and for each xi′ ∈ X such that (xj , xi′) ∈�, it holds that (xi, xi′) ∈�.

Then for each �0∈ TPOX , we construct an SNT S ′ = (Q′, X, Y, δ′, q′0, O
′) as

follows: Q′ = Q× TPOX , and q′0 = (q0,�0). Moreover, O′ is defined as follows: For
each (q,�) ∈ Q′, O′((q,�)) = O(q). It remains to define δ′.

The transition set δ′ is defined by the following rules:
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– For each (q, g∧cur 6= ., η, q′) ∈ δ, δ′ includes all the transitions (q,�) (g′∧cur 6=.,η)−−−−−−−−→
(q′,�′) satisfying the following constraints.
• g′ is of one of the following forms,
∗ g′ ≡ ϕ� ∧ cur = xi, or
∗ g′ ≡ ϕ� ∧ cur > xj ∧ cur < xi such that xi ∈ X is a �-successor of
xj ∈ X , or

∗ g′ ≡ ϕ� ∧ cur > xi such that there does not exist a �-successor of xi, or
∗ g′ ≡ ϕ� ∧ cur < xi such that there does not exist a �-predecessor of xi,

where ϕ� ≡
∧
i′<j′

ψxi′ ,xj′ , and for each pair of indices i′, j′ ∈ [k] such that

i′ < j′, if (xi′ , xj′), (xj′ , xi′) ∈�, then ψxi′ ,xj′ ≡ xi′ = xj′ , otherwise,
if (xi′ , xj′) ∈� and (xj′ , xi′) 6∈�, then ψxi′ ,xj′ ≡ xi′ < xj′ , otherwise,
ψxi′ ,xj′ ≡ xi′ > xj′ .

• g and g′ are compatible, more precisely, g ∧ g′ is satisfiable (note that ϕ�,
which encodes the information in �, has been included in g′).

• �′ is constructed as follows.
∗ Case g′ ≡ ϕ� ∧ cur = xi: At first, for each xi′ ∈ X , introduce a fresh

variable x′i′ to denote the value of xi′ after the transition (q, g ∧ cur 6=
., η, q′). Let X ′ denote the set of fresh variables. Let �′′ be the reflexive
and transitive closure of the relation

� ∪ {(xi′ , x′i′), (x′i′ , xi′) | xi′ ∈ X \ dom(η)} ∪
{(cur, xi), (xi, cur)} ∪ {(x′i′ , xi′′), (xi′′ , x′i′) | η(xi′) = xi′′} ∪
{(x′i′ , cur), (cur, x′i′) | η(xi′) = cur}.

Then �′ is the total preorder obtained from �′′ ∩ X ′ ×X ′ by replacing
each x′i′ ∈ X ′ with xi′ ∈ X .
∗ Case g′ ≡ ϕ�∧cur > xj∧cur < xi: At first, for each xi′ ∈ X , introduce a

fresh variable x′i′ to denote the value of xi′ after the transition (q, g∧cur 6=
., η, q′). Let X ′ denote the set of fresh variables. Let �′′ be the reflexive
and transitive closure of the relation

� ∪ {(xi′ , x′i′), (x′i′ , xi′) | xi′ ∈ X \ dom(η)} ∪
{(xj , cur), (cur, xi)} ∪ {(x′i′ , xi′′), (xi′′ , x′i′) | η(xi′) = xi′′} ∪
{(x′i′ , cur), (cur, x′i′) | η(xi′) = cur}.

Then �′ is the total preorder obtained from �′′ ∩ X ′ ×X ′ by replacing
each x′i′ ∈ X ′ with xi′ ∈ X .

• Case g′ ≡ ϕ� ∧ cur > xi, or g′ ≡ ϕ� ∧ cur < xi: Similar.

– For each (q, g ∧ cur = ., η, q′) ∈ δ, δ′ includes all the transitions (q,�) (cur=.,η)−−−−−−→
(q′,�′) satisfying the following constraints.
• � and g are compatible, more precisely, ϕ� ∧ g is satisfiable, where ϕ� is

defined as above.
• �′ is constructed as follows. At first, for each xi′ ∈ X , introduce a fresh vari-

able x′i′ to denote the value of xi′ after the transition (q, g ∧ cur = ., η, q).
Let X ′ denote the set of fresh variables. Let �′′ be the reflexive and transi-
tive closure of the relation � ∪ {(xi′ , x′i′), (x′i′ , xi′) | xi′ ∈ X \ dom(η)} ∪
{(x′i′ , xi′′), (xi′′ , x′i′) | η(xi′) = xi′′}. Then �′ is the total preorder obtained
from �′′ ∩ X ′ ×X ′ by replacing each x′i′ ∈ X ′ with xi′ ∈ X .
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At first, from the construction, we know that S ′ is path-feasible, state-dominating,
and .-transition-guard-tree. We then show that S ′ is generalized-flat. It is sufficient
to prove that for each state q in some nontrivial SCC S of S, there does not exist a
nontrivial SCC in S ′ that includes at least two distinct states (q,�1) and (q,�2).

To the contrary, suppose that there are a state q in some nontrivial SCC S of S and
two distinct states (q,�1) and (q,�2) in some nontrivial SCC of S ′.

Since �1 6=�2, without loss of generality, we assume that there are a pair of distinct
control variables xi, xj such that (xi, xj) ∈�1 and (xi, xj) 6∈�2. We introduce some
notations first. For x ∈ {xi, xj}, we say that x computes the minimum (resp. maximum)
value in S if whenever cur < x (resp. cur > x) occurs in a transition (q, g, η, q) of S, it
holds that η(x) = cur. We distinguish between the following situations.

– Suppose that both xi and xj compute the minimum value in S. Since both xi and
xj compute the minimum value in S, when starting from some configuration (q, ρ)
such that ρ |= xi ≤ xj and keep applying the transitions in S, we know that in each
transition,
• either the current data value is less or equal to both xi and xj , then both xi and
xj are assigned to the current data value and become equal,

• or the current data value is greater than xi and less or equal to xj , then the
current data value is assigned to xj (with the value of xi unchanged), then
xi < xj holds after the transition,

• or the current data value is greater than both xi and xj , then both the value of
xi and that of xj are unchanged.

Therefore, when following a path from (q,�1) to (q,�2) in S ′, the fact xi ≤ xj
persists. This implies that (xi, xj) ∈�2, a contradiction.

– Suppose that both xi and xj compute the maximum value in S. Similarly to the
arguments in the previous situation, we know that when following a path from
(q,�1) to (q,�2) in S ′, the fact xi ≤ xj persists. This implies that (xi, xj) ∈�2,
a contradiction.

– Suppose that xi computes the minimum value in S and xj computes the maximum
value in S. Since xi computes the minimum value and xj computes the maximum
value in S, we know that the value of xi is non-increasing and the value of xj is
non-decreasing. Therefore, when following a path from (q,�1) to (q,�2), the fact
xi ≤ xj persists. This implies that (xi, xj) ∈�2, a contradiction.

– Suppose that xi computes the minimum value in S and xj computes neither the
minimum value nor the maximum value in S. Then the value of xi is non-increasing
and the value of xj is unchanged when staying in S. The arguments are similar to
the previous case.

– Suppose that xi computes neither the minimum value nor the maximum value and
xj computes the maximum value in S. Then the value of xi is unchanged and the
value of xj is non-decreasing when staying in S. The arguments are similar to the
previous case.

– Suppose that xi computes the maximum value in S and xj computes the minimum
value in S. Then in S, the value of xi is non-decreasing and the value of xj is non-
increasing. From (xi, xj) ∈�1 and (xi, xj) 6∈�2, we know that when following a
path from (q,�1) to (q,�2) in S ′, sometime the value of xi becomes strictly greater
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than that of xj , and this fact persists afterwards. Therefore, we have (xj , xi) ∈�2

and (xi, xj) 6∈�2. Since in S, the value of xi is non-decreasing and the value of xj
is non-increasing, we know that when following a path from (q,�2) to (q,�1) in
S ′, xj < xi persists. Therefore, (xj , xi) ∈�1 and (xi, xj) 6∈�1, a contradiction.

– Suppose that xi computes the maximum value and xj computes neither the mini-
mum value nor the maximum value in S. Then the value of xi is non-decreasing
and the value of xj is unchanged when staying in S. The arguments are similar to
the previous case.

– Suppose that xi computes neither the minimum value nor the maximum value in S
and xj computes the minimum value in S. Then the value of xi is unchanged and
the value of xj is non-increasing when staying in S. The arguments are similar to
the previous case.

– Suppose xi (resp. xj) computes neither the minimum value nor the maximum value
in S. Then the value of xi and xj are unchanged when staying in S. Therefore, if
xi ≤ xj holds in the state (q,�1), then it holds in each state belonging to the same
SCC as (q,�1) in S ′. In particular, (xi, xj) ∈�2, a contradiction.

Consequently, in each of the situations aforementioned, we always get a contradiction.
We conclude that the assumption is false and S ′ is indeed generalized-flat. ut

C Proofs in Section 5.1

Proposition 5. Suppose that P is a path starting form p0 and the initial values of
X ∪ Y are represented by a symbolic valuation Ω such that for each pair of variables
xi, xj ∈ X ,Ω(xj) = Ω(xj) iff xi ∼p0 xj . Then the values ofX∪Y after traversing the
path P are specified by a symbolic valuationΘ(P,Ω) satisfying the following conditions.

– The set of indices of X , i.e., [k], is partitioned into IPpe and IPtr, the indices of per-
sistent and transient control variables, respectively. A control variable is persistent
if it stores the initial value of some control variable after traversing P , otherwise,
it is transient.

– For each xj ∈ X such that j ∈ IPpe, Θ(P,Ω)(xj) = Ω(xπp0 (πPpe(j))
), where πPpe :

IPpe → [sp0 ] is a mapping from the index of a persistent control variable xj to
the index of the equivalence class such that the initial value of control variables
corresponding to this equivalence class is assigned to xj after traversing P .

– For each xj ∈ X such that j ∈ IPtr, Θ(P,Ω)(xj) = dP
πPtr(j)

, where πPtr : I
P
tr → [rP ]

is a mapping from the index of a transient control variable to the index of the data
value assigned to it.

– For each yj ∈ Y ,

Θ(P,Ω)(yj) = εPj + λPj Ω(yj) +
∑

j′∈[sp0 ]

αPj,j′Ω(xπp0 (j′)) +
∑

j′′∈[rP ]

βPj,j′′d
P
j′′ ,

where εPj , λ
P
j , α

P
j,1, . . . , α

P
j,sp0

, βPj,1, . . . , β
P
j,rP

are integer constants such that λPj ∈
{0, 1} (as a result of the “independently evolving and copyless” constraint). It can
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happen that λPj = 0, which means thatΩ(yj) is irrelevant toΘ(P,Ω)(yj). Similarly

for αPj,1 = 0, and so on.

Proof. Suppose S = (Q,X, Y, δ, q0, O) is a normalized SNT and P = p0
(g1,η1)−−−−→

p1 . . . pn−1
(gn,ηn)−−−−−→ pn is a path of S. We assume that the initial values of the control

and data variables are represented by a symbolic valuation Ω over X ∪ Y such that for
each pair of variables xi, xj ∈ X , Ω(xj) = Ω(xj) iff xi ∼p0 xj .

We show by an induction that for each i : 1 ≤ i ≤ n, a symbolic valuation Θi over
X+ ∪ Y can be constructed to describe the value of xj (resp. yj) after going through
the first i transitions of P . Moreover, an index set Ii ⊆ [k] is computed as well.

– At first, compute Θ0 and I0 as follows.
1. For each xj ∈ X , Θ0(xj) := Ω(xj′0), where j′0 = min({j′ ∈ [k] | j′ ∼p0 j}).
2. If g1 |= cur = xj for some xj ∈ X , then Θ0(cur) := Θ0(xj) and s := 0,

otherwise, Θ0(cur) := dP1 and s := 1.
3. For each yj ∈ Y , Θ0(yj) := Ω(yj).
4. In addition, let I0 = ∅.

– Let i : 1 ≤ i ≤ n. Then Θi and Ii are computed as follows:
1. Initially, let Ii := ∅.
2. For each xj ∈ X , we distinguish among the following situations,
• if xj 6∈ dom(ηi), then Θi(xj) := Θi−1(xj), in addition, if j ∈ Ii−1, let
Ii := Ii ∪ {j},

• if xj ∈ dom(ηi), in addition, either ηi(xj) = xj′ for some xj′ ∈ X , or
ηi(xj) = cur and ϕqi−1 ∧ gi |= cur = xj′ for some xj′ ∈ X , then let
Θi(xj) := Θi−1(xj′), in addition, if xj′ ∈ Ii−1, then let Ii := Ii ∪ {j},

• if ηi(xj) = cur and there do not exist xj′ ∈ X such that ϕqi−1
∧ gi |=

cur = xj′ , then let Θi(xj) := Θi−1(cur) and Ii := Ii ∪ {j}.
3. Compute Θi(cur) as follows:
• If i < n and there exists xj ∈ X such that ϕqi ∧ gi+1 |= cur = xj , then

let Θi(cur) := Θi(xj).
• If i < n and there do not exist xj ∈ X such that ϕqi ∧ gi+1 |= cur = xj ,

then let s := s+ 1 and Θi(cur) := dPs .
• If i = n, then let Θi(cur) := ⊥.

4. For each yj ∈ Y , if yj ∈ dom(ηi), then let Θi(yj) := Jηi(yj)KΘi−1 , otherwise,
let Θi(yj) := Θi−1(yj).

Then let IPtr := In, IPpe := [k] \ IPtr, and rP := s. The mapping πPpe and πPtr are defined
as follows:

– For each j ∈ IPpe, let xj′ ∈ X such that Θn(xj) = Ω(xj′), then πPpe(j) :=

(πp0)−1(j′).
– For each j ∈ IPtr, let s′ ∈ [rP ] such that Θn(xj) = dPs′ , let πPtr(j) := s′.

The symbolic valuation Θ(P,Ω) can be defined as the restriction of Θn to X ∪ Y . Since
for each assignment ηi and yj ∈ Y , ηi(yj) = e or ηi(yj) = yj + e for e ∈ EX+ , it
follows that Θ(P,Ω)(yj) is of the form required by the proposition. ut
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Proposition 6. Suppose that C is a simple cycle (i.e. a self-loop around a state q) and
P = C` such that ` ≥ 2. Then the symbolic valuation Θ(C`,Ω) to summarize the
computation of S on P is as follows:
Θ(C`,Ω)(yj) =

(
1 + λCj + · · ·+ (λCj )

`−1
)
εCj + (λCj )

`Ω(yj) +∑
j′∈rng(πCpe)

(
1 + λCj + · · ·+ (λCj )

`−1
)
αCj,j′Ω(xπq(j′)) +∑

j′∈[sq ]\rng(πCpe)
(λCj )

`−1αCj,j′Ω(xπq(j′)) +

∑
j′∈rng(πCtr)

∑
s∈[`−1]

λCj βCj,j′ + ∑
j′′∈(πCtr)−1(j′)∩rng(πq)

αCj,(πq)−1(j′′)

 (λCj )
`−s−1dC,sj′ +

∑
j′∈[rC ]\rng(πCtr)

∑
s∈[`−1]

(
(λCj )

`−sβCj,j′
)
dC,sj′ +

∑
j′∈[rC ]

βCj,j′d
C,`
j′ ,

where the variables dC,s1 for s ∈ [`] represent the data values introduced when travers-
ing C for the s-th time.

Proof. We prove by an induction on ` that Θ(C`,Ω)(yj) is of the desired form required
by the proposition.
The induction base: ` = 2.

Let d(C,2)1 , . . . , d
(C,2)

rC
be the data values introduced when traversing the cycle for the

second time. Then from Corollary 2, we know that Θ(C2,Ω) = Θ(C,Θ(C,Ω)) is defined
as follows: For each yj ∈ Y ,

Θ(C2,Ω)(yj) =
(
εCj + λCj ε

C
j

)
+
(
λCj

)2
Ω(yj) +

∑
j′∈rng(πCpe)

(
1 + λCj

)
αCj,j′Ω(xπq(j′))

+
∑

j′∈[sq ]\rng(πCpe)
λCj α

C
j,j′Ω(xπq(j′))

+
∑

j′∈rng(πCtr)

λCj βCj,j′ + ∑
j′′∈(πCtr)−1(j′)∩rng(πq)

αCj,(πq)−1(j′′)

 dC,1j′

+
∑

j′∈[rC ]\rng(πCtr)

(
λCj β

C
j,j′

)
dC,1j′ +

∑
j′∈[rC ]

βCj,j′d
C,2
j′ .

Induction step: Let ` ≥ 3.
From the induction hypothesis, we know that for each yj ∈ Y , Θ(C`−1,Ω)(yj) is of

the desired form.
From Corollary 2, Θ(C`,Ω) = Θ(C,Θ(C`−1,Ω)). Then for each yj ∈ Y , by unfold-

ing the expressions Θ(C`−1,Ω)(xj′) for j′ ∈ [k] and Θ(C`−1,Ω)(yj′′) for j′′ ∈ [l] in

Θ(C,Θ(C`−1,Ω))(yj), we can observe that Θ(C`,Ω)(yj) is of the desired form. ut
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D Proofs in Section 5.2

Lemma 1. Suppose s = C`1i1 C
`2
i2
. . . C`tit is a cycle scheme, and Ω is a symbolic val-

uation representing the initial values of the control and data variables such that for

each xi, xj ∈ X , Ω(xi) = Ω(xj) iff i ∼qm j. For all j′ ∈ ICi1pe ∩ rng(πqm), let rj′

be the largest number r ∈ [t] such that j′ ∈
⋂
s∈[r] I

Cis
pe , i.e., xj′ remains persistent

when traversing C`1i1 C
`2
i2
. . . C

`r
j′

ir
j′

. Then for each j ∈ [l] and j′ ∈ ICi1pe ∩ rng(πqm), the

coefficient of the Ω(xj′)-atom in Θ(s,Ω)(yj) is

e+
∑

s1∈[rj′ ]

(
1 + λ

Cis1
j + · · ·+ (λ

Cis1
j )`s1−1

)
α
Cis1
j,(πqm )−1(j′)

∏
s2∈[s1+1,t]

(
λ
Cis2
j

)`s2
,

where (1) e=0 when rj′= t and (2) e = (λ
Cis
j )`s−1α

Cis
j,(πqm )−1(j′)

∏
s′∈[s+1,t]

(
λ
Ci
s′

j

)`s′
with s = rj′ + 1 when rj′ < t.
The constant atom of Θ(s,Ω)(yj) is

∑
s1∈[t]

(
1 + λ

Cis1
j + · · ·+ (λ

Cis1
j )`s1−1

)
ε
Cis1
j

∏
s2∈[s1+1,t]

(
λ
Cis2
j

)`s2
Moreover, for all j ∈ [l], in Θ(s,Ω)(yj), only the constant atom and the coefficients of

the Ω(xj′)-atoms with j′ ∈ ICi1pe ∩ rng(πqm) contain a subexpression of the form µs`1
for some µs ∈ Z.

Proof. The lemma can be shown by applying Proposition 6, Corollary 2, and an induc-
tion on the length t of the cycle schemes. ut
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