
Constrained Monotonic Abstraction: a CEGAR
for Parameterized Verification

Parosh Aziz Abdulla1, Yu-Fang Chen2, Giorgio Delzanno3, Frédéric Haziza1,
Chih-Duo Hong2, and Ahmed Rezine1

1 Uppsala University, Sweden
2 Academia Sinica, Taiwan

3 Università di Genova, Italy

Abstract. In this paper, we develop a counterexample-guided abstrac-
tion refinement (CEGAR) framework for monotonic abstraction, an ap-
proach that is particularly useful in automatic verification of safety prop-
erties for parameterized systems. The main drawback of verification using
monotonic abstraction is that it sometimes generates spurious counterex-
amples. Our CEGAR algorithm automatically extracts from each spuri-
ous counterexample a set of configurations called a “Safety Zone” and
use it to refine the abstract transition system of the next iteration. We
have developed a prototype based on this idea; and our experimenta-
tion shows that the approach allows to verify many of the examples that
cannot be handled by the original monotonic abstraction approach.

1 Introduction

We investigate the analysis of safety properties for parameterized systems. A
parameterized system consists of an arbitrary number of identical finite-state
processes running in parallel. The task is to verify correctness regardless of the
number of processes.

One of the most widely used frameworks for infinite-state verification using
systems that are monotonic w.r.t. a well-quasi ordering � [2, 24]. This framework
provides a scheme for proving termination of backward reachability analysis,
which has already been used for the design of verification algorithms of various
infinite-state systems (e.g., Petri nets, lossy channel systems) [7, 21, 23]. The
main idea is the following. For a class of models, we find a preorder � on the
set of configurations that satisfies the following two conditions (1) the system is
monotonic w.r.t. � and (2) � is a well-quasi ordering (WQO for short). Then,
backward reachability analysis from an upward closed set (w.r.t. �) guaranteed
to terminate, which implies that the reachability problem of an upward closed
set (w.r.t. �) is decidable.

However, there are several classes of systems that do not fit into this frame-
work, since it is hard to find a preorder that meets the aforementioned two
conditions at the same time. An alternative solution is to first find a WQO �
on the set of configurations and then apply monotonic abstraction [5, 3, 6] in
order to force monotonicity. Given a preorder � on configurations, monotonic
abstraction defines an abstract transition system for the considered model that is
monotonic w.r.t. �. More precisely, it considers a transition from a configuration

c1 to a configuration c2 to be possible if there exists some smaller configuration
c′1 � c1 that has a transition to c2. The resulting abstract transition system
is clearly monotonic w.r.t � and is an over-approximation of the considered
model. Moreover, as mentioned, if � is a WQO, the termination of backward
reachability analysis is guaranteed in the abstract transition system.

Monotonic abstraction has shown to be useful in the verification of heap ma-
nipulating programs [1] and parameterized systems such as mutual exclusion and
cache coherence protocols [3, 5]. In most of the benchmark examples for these
classes, monotonic abstraction can generate abstract transition systems that are
safe w.r.t to the desired properties (e.g. mutual exclusion). The reason is that, for
these cases, we need only to keep track of simple constraints on individual vari-
ables in order to successfully carry out verification. However, there are several
classes of protocols where we need more complicated invariants in order to avoid
generating spurious counterexamples. Examples includes cases where processes
synchronize via shared counters (e.g. readers and writers protocol) or reference
counting schemes used to handle a common set of resources (e.g. virtual memory
management). For these cases, monotonic abstraction often produces spurious
counterexamples, since it is not sufficiently precise to preserve the needed invari-
ants. Therefore, we introduce in this paper a counterexample-guided abstraction
refinement (CEGAR) approach to automatically and iteratively refine the ab-
stract transition system and remove spurious counterexamples.

The idea of the CEGAR algorithm is as follows. It begins with an initial pre-
order �0, which is the one used in previous works on monotonic abstraction [5].
In the i-th iteration, it tries to verify the given model using monotonic abstrac-
tion w.r.t. the preorder �i−1. Once a counterexample is found in the abstract
transition system, the algorithm simulates it on the concrete transition system.
In case the counterexample is spurious, the algorithm extracts from it a set S
of configurations called a “Safety Zone”. The computation of “Safety Zone” is
done using the interpolation technique [30, 28]. The set S (“Safety Zone”) is then
used to strengthen the preorder that will be used in the next iteration. Mono-
tonic abstraction produces a more accurate abstract transition system with the
strengthened preorder. More precisely, in the (i+ 1)-th iteration, the algorithm
works on an abstract transition system induced by monotonic abstraction and a
preorder �i:= {(c, c′)| c �i−1 c

′ and c′ ∈ S ⇒ c ∈ S}. Intuitively, the strength-
ened preorder forbids configurations inside a “Safety Zone” to use a transition
from some smaller configuration (w.r.t �i−1) outside the “Safety Zone”.

The strengthening of the preorder has an important property: It preserves
WQO. That is, if �i−1 is a WQO, then �i is also a WQO, for all i > 0. There-
fore, the framework of monotonic systems w.r.t. a WQO can be applied to each
abstract transition system produced by monotonic abstraction and hence ter-
mination is guaranteed for each iteration. Based on the method, we have im-
plemented a prototype, and successfully used it to automatically verify several
non-trivial examples, such as protocols synchronizing by shared counters and
reference counting schemes, that cannot be handled by the original monotonic
abstraction approach.

Outline We define parameterized systems and their semantics in Section 2.
In Section 3, we first introduce monotonic abstraction and then give an overview
of the CEGAR algorithm. In Section 4, we describe the details of the CEGAR
algorithm. We introduce a symbolic representation of infinite sets of configura-
tions called constraint. In Section 4, we show that all the constraint operations
used in our algorithm are computable. In Section 6, we show that the termina-
tion of backward reachability checking is guaranteed in our CEGAR algorithm.
Section 7 describes some extension of our model for parameterized system. In
Section 8 we describe our experimentation. Finally, in Section 9, we conclude
with a discussion of related tools and future works.

2 Preliminaries
In this section, we define a model for parameterized systems. We use B to denote
the set {true, false} of Boolean values, N to denote the set of natural numbers,
and Z to denote the set of integers. Let P be a set and � be a binary relation
on P . The relation � is a preorder on P if it is reflexive and transitive. Let
Q ⊆ P , we define a strengthening of � by Q, written �Q, to be the binary
relation �Q := {(c, c′)| c � c′ and c′ ∈ Q⇒ c ∈ Q}. Observe that �Q is also a
preorder on P .

Let XN be a set of numerical variables ranging over N. We use N (XN) to
denote the set of formulae which have the members of {x − y � c, x � c | x, y ∈
XN , c ∈ Z, � ∈ {≥,=,≤}} as atomic formulae, and which are closed under the
Boolean connectives ¬, ∧, ∨. Let XB be a finite set of Boolean variables. We use
B(XB) to denote the set of formulae which have the members of XB as atomic
formulae, and which are closed under the Boolean connectives ¬, ∧, ∨. Let X ′

be the set of primed variables {x′ | x ∈ X}, which refers to the “next state”
values of X.

2.1 Parameterized System

Here we describe our model of parameterized systems. A simple running example
of a parameterized system is given in Fig. 1. More involved examples can be found
in the Appendix. The example in Fig. 1 is a readers and writers protocol that
uses two shared variables; A numerical variable cnt (the read counter) is used to
keep track of the number of processes in the “read” state and a Boolean variable
lock is used as a semaphore. The semaphore is released when the writer finished
writing or all readers finished reading (cnt decreased to 0).

A parameterized system consists of an unbounded but finite number of iden-
tical processes running in parallel and operating on a finite set of shared Boolean
and numerical variables. At each step, one process changes its local state and
checks/updates the values of shared variables. Formally, a parameterized system
is a triple P = (Q,T,X), where Q is the set of local states, T is the set of transi-
tion rules, and X is a set of shared variables. The set of shared variables X can
be partitioned to the set of variables XN ranging over N and XB ranging over B.

A transition rule t ∈ T is of the form
[
q → r : stmt

]
, where q, r ∈ Q and

stmt is a statement of the form φN ∧ φB , where φN ∈ N (XN ∪X ′N) and φB ∈
B(XB ∪X ′B). The formula φN controls variables ranging over N and φB controls

Boolean variables. Taking the rule r1 in Fig. 1 as an example, the statement
says that “if the values of shared variables cnt = 0 and lock = true, then we are
allowed to increase the value of cnt by 1, negate the value of lock, and change
the local state of a process from t to r”.

shared lock: Boolean, cnt: nat

r1:
[
t→ r : cnt = 0 ∧ cnt′ = cnt+ 1 ∧ lock ∧ ¬lock′

]
r2:

[
t→ r : cnt >= 1 ∧ cnt′ = cnt+ 1

]
r3:

[
r → t : cnt >= 1 ∧ cnt′ = cnt− 1

]
r4:

[
r → t : cnt = 1 ∧ cnt′ = cnt− 1 ∧ ¬lock ∧ lock′

]
w1:

[
t→ w : lock ∧ ¬lock′

]
w2:

[
w → t : ¬lock = 0 ∧ lock′

]
Initial: t, lock

Fig. 1. Readers and writers protocol. Here t, r, w are “think”, “read”, and “write”
states, respectively.

2.2 Transition System

A parameterized system P = (Q,T,X) induces an infinite-state transition sys-
tem (C,−→) where C is the set of configurations and −→ is the set of transitions.

A configuration c ∈ C is a function Q ∪X → N ∪ B such that (1) c(q) ∈ N
gives the number of processes in state q if q ∈ Q, (2) c(x) ∈ N if x ∈ XN and
(3) c(x) ∈ B if x ∈ XB . We use [xv11 , x

v2
2 , . . . , x

vn
n , b1, b2, . . . , bm] to denote a

configuration c such that (1) c(xi) = v1 for 1 ≤ i ≤ n and (2) c(b) = true iff
b ∈ {b1, b2, . . . , bm}.

The set of transitions is defined by −→:=
⋃

t∈T
t−→. Let c, c′ ∈ C be two

configurations and t =
[
q → r : stmt

]
be a transition rule. We have (c, c′) ∈ t−→

(written as c t−→ c′) if (1) c′(q) = c(q)−1, (2) c′(r) = c(r)+1, and (3) substitut-
ing each variable x in stmt with c(x) and its primed version x′ in stmt with c′(x)

produces a formula that is valid. For example, we have
[
r0, w0, t3, cnt0, lock

] r1−→[
r1, w0, t2, cnt1

]
in the protocol model of Fig. 1. We use ∗−→ to denote the tran-

sitive closure of −→ .

3 Monotonic Abstraction and CEGAR

We are interested in reachability problems, i.e., given sets of initial and bad con-
figurations, can we reach any bad configuration from some initial configuration
in the transition system induced by a given parameterized system.

We first recall the method of monotonic abstraction for the verification of
parameterized systems and then describe an iterative and automatic CEGAR ap-
proach. The approach allows to produce more and more precise over-approximations
of a given transition system from iteration to iteration. We assume a transition
system (C,−→) induced by some parameterized system.

3.1 Monotonic Abstraction

Given an ordering E defined on C, monotonic abstraction produces an abstract
transition system (C,;) that is an over-approximation of (C,−→) and that is
monotonic w.r.t. E.

Definition 1 (Monotonicity). A transition system (C,;) is monotonic (w.r.t.

E) if for each c1, c2, c3 ∈ C, c1 E c2 ∧ c1 t
; c3 ⇒ ∃c4. c3 E c4 ∧ c2 t

; c4.

The idea of monotonic abstraction is the following. A configuration c is al-
lowed to use the outgoing transitions of any smaller configuration c′ (w.r.t E).
The resulting system is then trivially monotonic and is an over-approximation of
the original transition system. Formally, the abstract transition system (C,;)
is defined as follows. The set of configurations C is identical to the one of
the concrete transition system. The set of abstract transitions is defined by

;:=
⋃

t∈T
t
;, where (c1, c3) ∈ t

; (written as c1
t
; c3) iff ∃c2 E c1. c2 t−→ c3. It

is clear that t
;⊇ t−→ for all t ∈ T , i.e., (C,;) over-approximates (C,−→).

In our previous works [3, 5], we defined E to be a particular ordering �⊆
C × C such that c � c′ iff (1) ∀q ∈ Q.c(q) ≤ c′(q), (2) ∀n ∈ XN . c(n) ≤ c′(n),
and (3) ∀b ∈ XB . c(b) = c′(b). Such an ordering has shown to be very useful in
shape analysis [1] and in the verification of safety properties of mutual exclusion
and cache coherence protocols [3, 5]. In the CEGAR algorithm, we use � as the
initial preorder.

3.2 Refinement of the Abstraction

Reachability Checker
(Algorithm 1)

Counterexample Analyzer
(Algorithm 2)

“No”, Trace

(
C,−→

)
,�0

“Spurious Error”

“Safe”

“Real Error”
Trace

Strengthened
Ordering �i

Fig. 2. An overview of the CEGAR algorithm (Algorithm 3).

Figure 2 gives an overview of the counterexample-guided abstraction refine-
ment (CEGAR) algorithm. The algorithm works fully automatically and iter-
atively. In the beginning, a transition system (C,−→) and an initial preorder
�0 (which equals the preorder � defined in the previous subsection) are given.
The CEGAR algorithm (Algorithm 3) consists of two main modules, the reach-
ability checker (Algorithm 1) and the counterexample analyzer (Algorithm 2).
In the i-th iteration of the CEGAR algorithm, the reachability checker tests if
bad configurations are reachable in the abstract transition system obtained from
monotonic abstraction with the preorder �i−1. In case bad configurations are
reachable, a counterexample is sent to the counterexample analyzer, which re-
ports either “Real Error” or “Spurious Error”. The latter comes with a strength-
ened order �i (i.e., �i⊂�i−1). The strengthened order �i will then be used in
the (i + 1)-th iteration of the CEGAR loop. Below we describe informally how
�i−1 is strengthened to �i. The formal details are given in Section 4.

Strengthening the Preorder. As an example, we demonstrate using the
protocol of Fig. 1 how to obtain �1 from �0. The set of bad configurations
Bad = {c | c(r) ≥ 1 ∧ c(w) ≥ 1} contains all configurations with at least one
process in the “write” state and one process in the “read” state. The set of
initial configurations Init = {c | c(w) = c(r) = c(cnt) = 0 ∧ c(lock)} contains
all configurations where all processes are in the “think” state, the value of the
“cnt” equals 0, and the “lock” is available.

Bad

c(r)≥1
c(w)≥1

w1

c(t)≥1
c(r)≥1
c(lock)

B1

r4

c(r)≥2
c(cnt)≥1
¬c(lock)

B2

r2

c(r)≥1
c(t)≥1

c(cnt)≥1
¬c(lock)

B3

r1

c(t)≥2
c(lock)

B4

Fig. 3. The counterexample produced by backward reachability analysis on the readers
and writers protocol. Notice that in the counterexample, Init ∩B4 6= ∅.

In iteration 1 of the CEGAR algorithm, the reachability checker produces a
counterexample (described in Fig. 3) and sends it to the counterexample analyzer.
More precisely, the reachability checker starts from the set Bad and finds the
set B1 contains all configurations that have (abstract) transitions

w1
; to the set

Bad . That is, each configuration in B1 either has a concrete transition
w1−→ to

Bad or has some smaller configuration (w.r.t �0) with a concrete transition
w1−→

to Bad . It then continues the search from B1 and finds the set B2 that have
(abstract) transitions in

r4
; to B1. The sets B3 and B4 can be found in a similar

way. It stops when B4 is found, since B4 ∩ Init 6= ∅.

Bad

B1B2

F2

F ′2

B3

F3

Init∩B4

F4

r4
r4

r2
r2

r1

r1

S

Fig. 4. Simulating the counterexample on the concrete system. Here F4 = Init ∩B4 =
{c | c(t) ≥ 2 ∧ c(w) = c(r) = c(cnt) = 0 ∧ c(lock)}, F3 = {c | c(t) ≥ 1 ∧ c(w) =
0 ∧ c(r) = c(cnt) = 1 ∧ ¬c(lock)}, F2 = {c | c(cnt) = c(r) = 2 ∧ c(w) = 0 ∧ ¬c(lock)},
and F ′2 = {c | c(cnt) = 1 ∧ c(r) ≥ 1 ∧ ¬c(lock)}

The counterexample analyzer simulates the received counterexample in the
concrete transition system. We illustrate this scenario in Fig. 4. It starts from the
set of configuration F4 = Init ∩B4

1 and checks if any bad configurations can be
reached following a sequence of transitions

r1−→;
r2−→;

r4−→;
w1−→. Starting from F4, it

finds the set F3 which is a subset of B3 and which can be reached from F4 via the
transition

r1−→. It continues from F3 and then finds the set F2 in a similar manner
via the transition

r2−→. However, there exists no transition
r4−→ starting from any

1 The set of initial configurations that can reach bad configurations follows the se-

quence of transitions
r1
;;

r2
;;

r4
;;

w1
; in the abstract transition system

configuration in F2 = {c | c(cnt) = c(r) = 2 ∧ c(w) = 0 ∧ ¬c(lock)}. Hence the
simulation stops here and concludes that the counterexample is spurious.

In the abstract transition system, all configurations in F2 are able to reach B1

via transition
r4
; and from which they can reach Bad via transition

w1
;. Notice

that there exists no concrete transition
r4−→ from F2 to B1, but the abstract

transition
r4
; from F2 to B1 does exist. The reason is that all configurations in

F2 have some smaller configuration (w.r.t. �0) with a transition
r4−→ to B1. Let

F ′2 be the set of configurations that indeed have some transition
r4−→ to B1. It is

clear that F2 and F ′2 are disjoint.
Therefore, we can remove the spurious counterexample by preventing con-

figurations in F2 from falling to some configuration in F ′2 (thus also preventing
them from reaching B1). This can be achieved by first defining a set of configu-
rations S called a “Safety Zone” with F2 ⊆ S and F ′2 ∩ S = ∅ and then use it to
strengthen the preorder �0, i.e., let �1:= {(c, c′)| c �0 c

′ and c′ ∈ S ⇒ c ∈ S}.
In Section 4, we will explain how to use interpolation techniques [30, 28] in order
to automatically obtain a “Safety Zone” from a counterexample.

4 The Algorithm

In this section, we describe our CEGAR algorithm for monotonic abstraction.
First, we define some concepts that will be used in the algorithm. Then, we ex-
plain the two main modules, reachability checker and counterexample analyzer.
The reachability checker (Algorithm 1) is the backward reachability analysis
algorithm on monotonic systems [2], which is possible to apply since the ab-
straction induces a monotonic transition system. The counterexample analyzer
(Algorithm 2) checks a counterexample and extracts a “Safety Zone” from the
counterexample if it is spurious. The CEGAR algorithm (Algorithm 3) is ob-
tained by composing the above two algorithms. In the rest of the section, we
assume a parameterized system P = (Q,T,X) that induces a transition system
(C,−→).

4.1 Definitions

A substitution is a set {x1 ← e1, x2 ← e2, . . . , xn ← en} of pairs, where xi is a
variable and ei is a variable or a value of the same type as xi for all 1 ≤ i ≤ n.
We assume that all variables are distinct, i.e., xi 6= xj if i 6= j. For a formula
θ and a substitution S, we use θ[S] to denote the formula obtained from θ by
simultaneously replacing all free occurrences of xi by ei for all xi ← ei ∈ S. For
example, if θ = (x1 > x3) ∧ (x2 + x3 ≤ 10), then θ[x1 ← y1, x2 ← 3, x3 ← y2] =
(y1 > y2) ∧ (3 + y2 ≤ 10).

Below we define the concept of a constraint, a symbolic representation of
configurations which we used in our algorithm. In this section, we define a num-
ber of operations on constraints. In Section 5, we show how to compute those
operations.

We useQ# to denote the set {q# | q ∈ Q} of variables ranging over N in which
each variable q# is used to denote the number of processes in the state q. Define
the set of formulae Φ := {φN ∧ φB | φN ∈ N (Q# ∪ XN), φB ∈ B(XB)} such

that each formula in Φ is a constraint that characterizes a potentially infinite
set of configurations. Let φ be a constraint and c be a configuration. We write
c � φ if φ[{q# ← c(q) | q ∈ Q}][{x ← c(x) | x ∈ XN}][{b ← c(b) | b ∈ XB}]
is a valid formula. We define the set of configurations characterized by φ as
[[φ]] := {c | c ∈ C ∧ c � φ}. We define an entailment relation v on constraints,
where φ1 v φ2 iff [[φ1]] ⊆ [[φ2]]. We assume that the set of initial configurations
Init and bad configurations Bad can be characterized by constraints φInit and
φBad , respectively.

For a constraint φ, the function Pret(φ) returns a constraint characterizing

the set {c | ∃c′ ∈ [[φ]] ∧ c t−→ c′}, i.e., the set of configurations from which we

can reach a configuration in [[φ]] via transitions in t−→; and Postt(φ) returns a

constraint characterizing the set {c | ∃c′ ∈ [[φ]]∧c′ t−→ c}, i.e., the set of configu-

rations that can be reached from some configuration in [[φ]] via transitions in t−→.
For a constraint φ and a preorder � on the set of configurations, the function
Up�(φ) returns a constraint such that [[Up�(φ)]] = {c′ | ∃c ∈ [[φ]] ∧ c � c′}, i.e.,
the upward closure of [[φ]] w.r.t. the ordering �. A trace (from φ1 to φn+1) in the
abstract transition system induced by monotonic abstraction and the preorder
� is a sequence φ1; t1; . . . ;φn; tn;φn+1, where φi = Up�(Preti(φi+1)) and ti ∈ T
for all 1 ≤ i ≤ n. A counterexample (w.r.t. �) is a trace φ1; t1; . . . ;φn; tn;φn+1

with [[φ1]] ∩ [[φInit]] 6= ∅ and φn+1 = φBad .

We use Var(φ) to denote the set of variables that appear in the constraint
φ. Given two constraints φA and φB such that φA ∧ φB is unsatisfiable. An
interpolant φ of (φA, φB) (denoted as ITP(φA, φB)) is a formula that satisfies (1)
φA =⇒ φ, (2) φ∧φB is unsatisfiable, and (3) Var(φ) ⊆ Var(φA)∩Var(φB). Such
an interpolant can be automatically found, e.g., using off-the-shelf interpolant
solvers such as FOCI [30] and CLP-prover [31]. In particular, since φA, φB ∈ Φ, if
we use the “split solver” algorithm equipped with theory of difference bound [28]
to compute an interpolant, the result will always be a formula in Φ (i.e., a
constraint).

4.2 The Reachability Checker

Algorithm 1: The reachability checker

input : A preorder � over configurations, constraints φInit and φBad

output: either (1) “Safe” or (2) “No” with a counterexample
φ1; t1; . . . ;φn; tn;φBad

Next := {(φBad , φBad)};1

while Next is not empty do2

Pick and remove a pair (φCur ,Trace) from Next;3

if [[φCur ∧ φInit]] 6= ∅ then return “No”, Trace;4

foreach t ∈ T do5

φPre = Up�(Pret(φCur));6

if ¬∃(φ, •) ∈ Next.φPre v φ then Add (φPre , φPre ; t;Trace) to Next;7

return “Safe”;8

Let � be a preorder on C and (C,;) be the abstract transition system in-
duced by the parameterized system P and the preorder �. Algorithm 1 checks if
the set [[φInit]] is backward reachable from [[φBad]] in the abstract transition sys-
tem (C,;). It answers “Safe” if none of the initial configurations are backward
reachable. Otherwise, it answers “No”. In the latter case, it returns a counterex-
ample φ1; t1; . . . ;φn; tn;φBad . The algorithm uses a set Next to store constraints
characterizing the sets of configurations from which it will continue the back-
ward search. Each element in Next is a pair (φ,Trace), where φ is a constraint
characterizing a set of backward reachable configurations (in the abstract transi-
tion system) and Trace is a trace from φ to φBad . Initially, the algorithm puts in
Next the constraint φBad , which describes the bad configurations, together with
a trace contains a singleton element namely φBad itself (Line 1). In each loop
iteration (excepts the last one), it picks a constraint φCur (together with a trace
to φBad) from Next (Line 3). For each transition rule t ∈ T , the algorithm finds a
constraint φPre characterizing the set of configurations backward reachable from

[[φCur]] via t
; (Line 6). If there exists no constraint in Next that is larger than

φPre (w.r.t. v), φPre (together with a trace to φBad) is added to Next (Line 7).

4.3 The Counterexample Analyzer

Algorithm 2: The counterexample analyzer.

input : A counterexample φ1; t1; . . . ;φn; tn;φn+1

output: “Real Error” or “Spurious Error” with a constraint φS

φ = φ1 ∧ φInit ;1

for i = 1 to n do2

if [[Postti(φ)]] = ∅ then3

φ′ = Preti(φi+1);4

return “Spurious Error”, ITP(φ, φ′);5

φ = Postti(φ) ∧ φi+1;6

return “Real Error”;7

Given a counterexample φ1; t1; . . . ;φn; tn;φn+1, Algorithm 2 checks whether
it is spurious or not. If spurious, it returns a constraint φS that describes a
“Safety Zone” that will be used to strengthen the preorder.

As we explained in Section 3, we simulate the counterexample forwardly (Line
1-6). The algorithm begins with the constraint φ1 ∧φInit . If the counterexample
is spurious, we will find a constraint φ in the i-th loop iteration for some i :

1 ≤ i ≤ n such that none of the configurations in [[φ]] has transition
ti−→ to

[[φi+1]] (Line 3). For this case, it computes the constraint φ′ characterizing the

set of configurations with transitions
ti−→ to [[φi+1]] (Line 4) and then computes

a constraint characterizing a “Safety Zone”.
As we explained in Section 3, a “Safety Zone” is a set S of configurations

that satisfies (1) [[φ]] ⊆ S and (2) S ∩ [[φ′]] = ∅. Therefore, the constraint φS
characterizing the “Safety Zone” should satisfy (1) φ =⇒ φS and (2) φS ∧φ′ is

not satisfiable. The interpolant of (φ, φ′) is a natural choice of φS that satisfies
the aforesaid two conditions. Hence, in this case the algorithm returns ITP(φ, φ′)
(Line 5).

If the above case does not happen, the algorithm computes a constraint
characterizing the next set of forward reachable configurations in the counterex-
ample(Line 6) and proceeds to the next loop iteration. It returns “Real Error”
(Line 7) if the above case does not happen during the forward simulation.

4.4 The CEGAR Algorithm of Monotonic Abstraction

Algorithm 3: A CEGAR algorithm for monotonic abstraction

input : An initial preorder �0 over configurations, constraints φInit and φBad

output: “Safe” or “Real Error” with a counterexample φ1; t1; . . . ;φn; tn;φBad

i = 0;1

while true do2

result = ReachabilityChecker(�i, φInit , φBad);3

if result=“No”, Trace then4

type = CounterexampleAnalyzer(Trace);5

if type=“Spurious Error”, φS then i = i+ 1,�i:= Str(�i−1, φS);6

else return “Real Error”, Trace7

else return “Safe”8

In Algorithm 3, we describe the CEGAR approach for monotonic abstrac-
tion with the initial preorder �0. As described in Section 3, the algorithm works
iteratively. In the i-th iteration, in Line 3, we invoke the reachability checker (Al-
gorithm 1) using a preorder �i−1. When a counterexample is found, the coun-
terexample analyzer (Algorithm 2) is invoked to figure out if the counterexample
is real (Line 8) or spurious. In the latter case, the counterexample analyzer gen-
erates a constraint characterizing a “Safety Zone” and from which Algorithm 3
computes a strengthened preorder �i (Line 6 and 7). The function Str(�i−1, φS)
in Line 8 strengthens the preorder �i−1 by the set of configurations [[φS]].

5 Constraint Operations

Here we explain how to compute all the constraint operations used in the algo-
rithms in Section 4. Recall that Φ denotes the set of formulae {φN ∧ φB | φN ∈
N (Q# ∪XN), φB ∈ B(XB)}, where each formula in Φ is a constraint represent-

ing a set of configurations. We define Ψ := {φN ∧φB | φN ∈ N (Q#∪Q#′∪XN ∪
X ′N), φB ∈ B(XB ∪ X ′B)}, where each formula in Ψ defines a relation between
sets of configurations. Observe that formulae in Φ and in Ψ are closed under the
Boolean connectives and substitution.

Lemma 1. [20] Both Φ and Ψ are closed under projection (existential quantifi-
cation) and the projection functions are computable.

Lemma 2. [20] The satisfiability problem of formulae in Φ and Ψ is decidable.

Below we explain how to preform these constraint operations. For notational
simplicity, we define V := Q# ∪ XN ∪ XB and V′ := Q#′ ∪ X ′N ∪ X ′B . Let φ
be a formula in Φ (respectively, Ψ) and X a set of variables in V (respectively,
V∪V′), we use ∃X. φ to denote some formula φ′ in Φ (respectively, Ψ) obtained
by the quantifier elimination algorithm (Lemma 1).

Pre and Post. The transition relation t−→ for t =
[
q → r : stmt

]
∈ T can

be described by the formula θt := stmt ∧ q#′ = q# − 1 ∧ r#′ = r# + 1, which
is in Ψ . For a constraint φ, Pret(φ) = ∃V′. (θt ∧ φ[{x ← x′ | x ∈ V}]) ∈ Φ and
Postt(φ) = (∃V. (θt ∧φ))[{x′ ← x | x ∈ V}] ∈ Φ. Both functions are computable.

Entailment. Given two constraints φ1 and φ2, we have φ1 v φ2 iff φ1 ∧¬φ2

is unsatisfiable, which can be automatically checked. In practice, constraints can
be easily translated into disjunctions of difference bound matrices (DBM) and
hence a sufficient condition for entailment can be checked by standard DBM
operations [20].

Intersection with Initial States. Let φInit be a constraint characterizing
the initial configurations and φB be a constraint characterizing a set of configu-
rations. We have [[φInit]] ∩ [[φB]] 6= ∅ iff φInit ∧ φB is satisfiable.

Strengthening. Here we explain how to strengthen an ordering � w.r.t
a constraint φS ∈ Φ, providing that � is expressed as a formula φ� ∈ Ψ . The
strengthened order can be expressed as the formula φ�S

:= φ�∧(φS∨¬φS [{x←
x′ | x ∈ V}]). Intuitively, for two configurations c1 and c2, the formula says that
c1 �S c2 iff c1 � c2 and either c1 is in the “Safety Zone” or c2 is not in the
“Safety Zone” .

Remark 1. The initial preorder �0 of our algorithm can be expressed as the
formula

∧
x∈Q#∪XN , x′∈Q#′∪X′

N
. x ≤ x′ ∧

∧
b∈XB , b′∈X′

B
. (b ∧ b′) ∨ (¬b ∧ ¬b′),

which is in Ψ . The constraint extracted from each spurious counterexample is
in Φ if the algorithm in [28] is used to compute interpolant. Since the initial
preorder is a formula in Ψ and the constraint used for strengthening is in Φ, the
formula for the strengthened order is always in Ψ and computable.

Upward Closure. We assume that the ordering � is expressed as a formula
φ� ∈ Ψ and the constraint φ ∈ Φ. The upward closure of φ w.r.t. � can be
captured as Up�(φ) := (∃V. (φ ∧ φ�))[{x′ ← x | x ∈ V}], which is in Φ.

6 Termination

In this section, we show that each loop iteration of our CEGAR algorithm ter-
minates. We can show by Dickson’s lemma [19] that the initial preorder � is a
WQO. An ordering over configurations is a WQO iff for any infinite sequence
c0, c1, c2, . . . of configurations, there are i and j such that i < j and ci � cj .
Moreover, we can show that the strengthening of a preorder also preserves WQO.

Lemma 3. Let S be a set of configurations. If � is a WQO over configurations
then �S is also a WQO over configurations.

If a transition system is monotonic w.r.t. a WQO over configurations, back-
ward reachability analysis, which is essentially a fix-point calculation, termi-
nates within a finite number of iterations [2]. The abstract transition system
is monotonic. In Section 5, we show that all the constraint operations used in
the algorithms are computable. Therefore, in each iteration of the CEGAR algo-
rithm, the termination of the reachability checker (Algorithm 1) is guaranteed.
Since the length of a counterexample is finite, the termination of the counterex-
ample analyzer (Algorithm 2) is also guaranteed. Hence, we have the following
lemma.

Lemma 4. Each loop iteration of the CEGAR algorithm (Algorithm 3) is guar-
anteed to terminate.

7 Extension

The model described in Section 2 can be extended to allow some additional
features. For example, (1) dynamic creation of processes

[
· → q : stmt

]
, (2)

dynamic deletion of processes
[
q → · : stmt

]
, and (3) synchronous movement[

q1, q2, . . . , qn → r1, r2, . . . , rn : stmt
]
. Moreover, the language of the statement

can be extended to any formula in Presburger arithmetic. For all of the new fea-
tures, we can use the same constraint operations as in Section 5; the extended
transition rule still can be described using a formula in Ψ , Presburger arithmetic
is closed under Boolean connectives, substitution, and projection and all the
mentioned operations are computable.

8 Case Studies and Experimental Results

We have implemented a prototype and tested it on several case studies of clas-
sical synchronization schemes and reference counting schemes, which includes
readers/writers protocol, sleeping barbers problem, the missionaries/cannibals
problem [11], the swimming pool protocol [11, 25], and virtual memory manage-
ment. These case studies make use of shared counters (in some cases protected
by semaphores) to keep track of the number of current references to a given re-
source. Monotonic abstraction returns spurious counterexamples for all the case
studies. In our experiments, we use two interpolating procedures to refine the
abstraction. One is a homemade interpolant solver based on difference bound ma-
trices [28]; the other one is the CLP-prover [31], an interpolant solvers based on
constraint logic programming. The results, obtained on an Intel Xeon 2.66GHz
processor with 8GB memory, are listed in Table 1. It shows that our CEGAR
method efficiently verifies many examples in a completely automatic manner.

We compare our approach with three related tools: the ALV tool [14], the
Interproc Analyzer [26], and FASTer [11]. Three representative examples from
our case studies are used for the comparison, namely, the refined readers/writers
protocol, the missionaries/cannibals problem and the swimming pool protocol.
We model these examples in the modeling languages of the tools. The results
are summarized in Table 2.

Model Interpolant Pass Time #ref #cons

readers/writers DBM
√

0.04 sec 1 90
CLP

√
0.08 sec 1 90

refined readers/writers DBM
√

3.9 sec 2 3037
priority to readers CLP X - - -

refined readers/writers DBM
√

3.5 sec 1 2996
priority to writers CLP

√
68 sec 4 39191

sleeping DBM
√

3.9 sec 1 1518
barbers CLP

√
4.1 sec 1 1518

reference DBM
√

0.02 sec 1 19
counting CLP

√
0.05 sec 1 19

pmap reference DBM
√

0.1 sec 1 249
counting CLP

√
0.1 sec 1 249

missionary and
cannibals

DBM X - - -
CLP

√
0.1 sec 3 86

swimming
pool v2

DBM
√

0.2 sec 2 59
CLP

√
0.2 sec 2 55

Table 1. Summary of experiments of case studies. Interpolant denotes the kind of in-
terpolant prover we use, where DBM denotes the difference bound matrix based solver,
and CLP denotes the CLP-prover. Pass indicates whether the refinement procedure
can terminate with a specific interpolant prover. Time is the execution time of the
program, measured by the bash time command. #ref is the number of refinements
needed to verify the property. #cons is the total number of constraints generated by
the reachability checker. All case studies are described in details in appendix.

9 Related and Future Work
We have presented a method for refining monotonic abstraction in the con-
text of verification of safety properties parameterized systems. We have imple-
mented a prototype based on the method and used it to automatically verify
parameterized versions of synchronization and reference counting schemes. Our
method adopts an iterative counter-example guided abstraction refinement (CE-
GAR) scheme. Abstraction refinement algorithms for forward/backward analysis
of well-structured models have been proposed in [27, 16]. Our CEGAR scheme is
designed instead for undecidable classes of models. Other tools dealing with the
verification of similar parameterized systems can be divided into two categories:
exact and approximate. In Section 8, we compare our method to a representative
from each category. The results confirm the following. Exact techniques, such as
FASTer [11], restrict their computations to under-approximations of the set of
reachable states. They rely on computing the exact effect of particular categories
of loops, like non-nested loops for instance, and may not terminate in general.
On the contrary, our method is guaranteed to terminate at each iteration.On the
other hand, approximate techniques like ALV and the Interproc Analyzer [14,
26], rely on widening operators in order to ensure termination. Typically, such
operators correspond to extrapolations that come with a loss of precision. It
is unclear how to refine the obtained over-approximations when false positives
appear in parameterized systems like those we study.

Model Tool Pass Result Model Tool Pass Result

missionary
cannibals

cma
√

0.1 sec
pmap
ref.

counting

cma
√

0.1 sec
FASTer X out of memory FASTer

√
85 sec

Interproc X timeout Interproc
√

2.5 sec
ALV X can not verify ALV X can not verify

Model Tool Pass Result Model Tool Pass Result

swimming
pool

proc. v2

cma
√

0.2 sec readers
writers
priority
readers

cma
√

3.9 sec
FASTer X out of memory FASTer

√
186 sec

Interproc X timeout Interproc X timeout
ALV X can not verify ALV X can not verify

Table 2. Summary of tool comparisons. The memory limit of each execution is 8GB.
For cma, we list the best result obtained from DBM and CLP. The computation time
of the Interproc Analyzer is limited to 1 minute by the tool itself. ALV outputs “unable
to verify” for all test cases. FASTer fails to verify the swimming tool protocol and the
missionaries/cannibals model within a memory limit of 8GB. For FASTer, we tested
our examples with libraries Mona, Lash and Omega, and applied the forward and
the backward search strategies in turn. For the other tools, we just used the default
settings.

Also, the refinement method proposed in the present paper allows us to
automatically verify new case studies (e.g. reference counting schemes) that
cannot handled by regular model checking [29, 17, 8, 12, 32, 13], monotonic ab-
stractions [5, 3, 6] (they give false positives), environment abstraction [15], and
invisible invariants [9]. It is important to remark that a distinguished feature of
our method with respect to methods like invisible invariants and environment
abstraction is that we operate on abstract models that are still infinite-state thus
trying to reduce the loss of precision in the approximation required to verify a
property.

We currently work on extensions of our CEGAR scheme to systems in which
processes are linearly ordered. Concerning this point, in [4] we have applied a
manually supplied strengthening of the subword ordering to automatically verify
a formulation of Szymanski’s algorithm (defined for ordered processes) with non-
atomic updates.

References

1. P. A. Abdulla, A. Bouajjani, J. Cederberg, F. Haziz, and A. Rezine. Monotonic abstraction
for programs with dynamic memory heaps. In Proc. 20th Int. Conf. on Computer Aided
Verification, 2008.

2. P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. General decidability theorems for infinite-
state systems. In Proc. LICS ’96, 11th IEEE Int. Symp. on Logic in Computer Science, pages
313–321, 1996.

3. P. A. Abdulla, G. Delzanno, and A. Rezine. Parameterized verification of infinite-state processes
with global conditions. In Proc. 19th Int. Conf. on Computer Aided Verification, volume 4590
of Lecture Notes in Computer Science, pages 145–157, 2007.

4. P. A. Abdulla, G. Delzanno, and A. Rezine. Approximated context-sensitive analysis for param-
eterized verification. In FMOODS ’09/FORTE ’09: Proceedings of the Joint 11th IFIP WG
6.1 International Conference FMOODS ’09 and 29th IFIP WG 6.1 International Conference
FORTE ’09 on Formal Techniques for Distributed Systems, pages 41–56, Berlin, Heidelberg,
2009. Springer-Verlag.

5. P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine. Regular model checking without
transducers (on efficient verification of parameterized systems). In Proc. TACAS ’07, 13th Int.
Conf. on Tools and Algorithms for the Construction and Analysis of Systems, volume 4424
of Lecture Notes in Computer Science, pages 721–736. Springer Verlag, 2007.

6. P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine. Handling parameterized systems with
non-atomic global conditions. In Proc. VMCAI ’08, 9th Int. Conf. on Verification, Model
Checking, and Abstract Interpretation, 2008.

7. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Information and
Computation, 127(2):91–101, 1996.

8. P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Regular model checking made simple and
efficient. In Proc. CONCUR 2002, 13th Int. Conf. on Concurrency Theory, volume 2421 of
Lecture Notes in Computer Science, pages 116–130, 2002.

9. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with automatically
computed inductive assertions. In Berry, Comon, and Finkel, editors, Proc. 13th Int. Conf. on
Computer Aided Verification, volume 2102 of Lecture Notes in Computer Science, pages 221–
234, 2001.

10. D. Bacon and V. Rajan. Concurrent cycle collection in reference counted systems. ECOOP
2001Object-Oriented Programming, pages 207–235.

11. S. Bardin, J. Leroux, and G. Point. FAST extended release. In Computer Aided Verification,
pages 63–66. Springer.

12. B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large. In Proc. 15th Int.
Conf. on Computer Aided Verification, volume 2725 of Lecture Notes in Computer Science,
pages 223–235, 2003.

13. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. In CAV04,
Lecture Notes in Computer Science, pages 372–386, Boston, July 2004. Springer Verlag.

14. T. Bultan and T. Yavuz-Kahveci. Action language verifier. In ASE ’01: Proceedings of the 16th
IEEE international conference on Automated software engineering, page 382, Washington,
DC, USA, 2001. IEEE Computer Society.

15. E. Clarke, M. Talupur, and H. Veith. Environment abstraction for parameterized verification.
In Proc. VMCAI ’06, 7th Int. Conf. on Verification, Model Checking, and Abstract Interpre-
tation, volume 3855 of Lecture Notes in Computer Science, pages 126–141, 2006.

16. P. Cousot, P. Ganty, and J.-F. Raskin. Fixpoint-guided abstraction refinements. Lecture Notes
in Computer Science. Springer Verlag, 2007.

17. D. Dams, Y. Lakhnech, and M. Steffen. Iterating transducers. In G. Berry, H. Comon, and
A. Finkel, editors, Computer Aided Verification, volume 2102 of Lecture Notes in Computer
Science, 2001.

18. R. David and H. Alla. Petri nets and Grafcet. Prentice Hall, 1992.
19. L. E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with n distinct

prime factors. Amer. J. Math., 35:413–422, 1913.
20. D. Dill. Timing assumptions and verification of finite-state concurrent systems. In Automatic

Verification Methods for Finite-State Systems, volume 407 of Lecture Notes in Computer
Science, 1989.

21. E. Emerson and K. Namjoshi. On model checking for non-deterministic infinite-state systems.
In Proc. LICS ’98, 13th IEEE Int. Symp. on Logic in Computer Science, pages 70–80, 1998.

22. M. Emmi, R. Jhala, E. Kohler, and R. Majumdar. Verifying reference counting implementations.
In TACAS ’09: Proceedings of the 15th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 352–367, Berlin, Heidelberg, 2009. Springer-
Verlag.

23. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In Proc. LICS
’99, 14th IEEE Int. Symp. on Logic in Computer Science, 1999.

24. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1-2):63–92, 2001.

25. L. Fribourg and H. Olsén. Proving safety properties of infinite state systems by compilation
into Presburger arithmetic. CONCUR’97: Concurrency Theory, pages 213–227.

26. M. A. Gal Lalire and B. Jeannet. A web interface to the interproc analyzer. http://pop-
art.inrialpes.fr/interproc/interprocweb.cgi.

27. G. Geeraerts, J.-F. Raskin, and L. V. Begin. Expand, enlarge and check... made efficient. In
Proc. 16th Int. Conf. on Computer Aided Verification, Lecture Notes in Computer Science.
Springer Verlag, 2005.

28. R. Jhala and K. L. McMillan. A practical and complete approach to predicate refinement. In
Proc. TACAS ’06, 12th Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems, volume 3920 of Lecture Notes in Computer Science, 2006.

29. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking with rich
assertional languages. Theoretical Computer Science, 256:93–112, 2001.

30. K. L. McMillan. An interpolating theorem prover. In Proc. TACAS ’04, 10th Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems, volume 2988 of LNCS,
2004.

31. A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpolation. In Verifi-
cation, Model Checking, and Abstract Interpretation, pages 346–362. Springer.

32. T. Touili. Regular Model Checking using Widening Techniques. Electronic Notes in Theoret-
ical Computer Science, 50(4), 2001. Proc. Workshop on Verification of Parametrized Systems
(VEPAS’01), Crete, July, 2001.

int readcount = 0 ;
semaphore wsem = 1 , x = 1 ;

void reader (){
while (1){

wait (x) ;
readcount++;
i f (readcount==1) wait (wsem) ;
s i g n a l (x) ;
doReading () ;
wait (x) ;
readcount−−;
i f (readcount==0) s i g n a l (wsem) ;
s i g n a l (x) ;

}
}

void w r i t e r (){
while (1){

wait (wsem)
doWriting () ;
s i g n a l (wsem)

}
}

Fig. 5. Reader/writers with priority to readers.

A Description of case-studies

A.1 Readers and Writers: Priority to Readers

The RW problem is a classic problem for which design of synchronization and
concurrency mechanisms can be tested. The problem is defined as follows. There
is a resource that is shared among a number of processes. Any number of readers
may simultaneously read to the data area. Only one writer at a time may write
to the data area. If a writer is writing to the data area, no reader may read it.
If there is at least one reader reading the data area, no writer may write to it.
Readers only read and writers only write. A process that reads and writes to a
data area must be considered a writer.

One possible strategy to control the access to the shared resource is to give
priority to readers as in the pseudo-code of Fig. 5. In this solution, readers
wait that no writers are inside the critical section and then get the lock on
semaphore wsem. This blocks writers until there are incoming readers. The
last reader unlock wsem and let waiting writers to enter critical section. We
model this concurrent program using the parameterized system in Fig. 6. Every
processes is modelled with a set of transitions with constraints on a set of shared
variables. We use lockR and lockW to model resp. mutex x and wsem of Fig. 5.
Furthermore, we use count to model variable readcount. When lockR = 1 then
mutex is unlocked, locked otherwise. Location test1 is used to simulate the first if-
then-else on count in the reader’s code of Fig. 5 (in the enter section). Location
test2 is used to simulate the if-then-else in the exit section. In this example
we consider the mutual exclusion property for readers and writers. Monotonic

Shared : lockR, lockW ∈ 0, 1, count : int

Reader :
think −→ test1 : lockR = 1, lockR′ = 0, count′ = count+ 1
test1 −→ read : count = 1, lockW = 1, lockW ′ = 0, lockR′ = 1
test1 −→ read : count ≥ 2, lockR′ = 1
read −→ test2 : count′ = count− 1, lockR = 1, lockR′ = 0
test2 −→ think : count = 0, lockW ′ = lockR′ = 1
test2 −→ think : count ≥ 1, lockR′ = 1

Writer :
think −→ write : lockW = 1, lockW ′ = 0
write −→ think : lockW ′ = 1

Initial state : lockW = 1, count = 0 • think, think, . . .
Bad states : φ = (read, write)

Fig. 6. Parameterized model for readers writers with priority to readers.

abstraction cannot verify this property and returns a spurious counterexample.
As shown in Table 1, our CEGAR method automatically checks the property
for any number of readers and writers after one step of refinement for a total
execution time of 3.9 seconds.

A.2 Readers and Writers: Priority to Writers

Another possible strategy for solving the reader/writer problem is to give priority
to writers as in the pseudo-code of Fig. 7. The idea here is to delay readers that
requires access when there are waiting writers (i.e. if a reader is in critical section,
writers are waiting, incoming readers cannot jump into the critical section but
have to wait for the writers). This is achieved by introducing an additional
semaphore rsem needed here to create an additional barrier for readers and an
additional counter writecount to keep track of the number of waiting writers.

We model this concurrent program using the parameterized system in Fig. 8.
We use lockZ, lockR and lockW to model resp. mutex z, rsem, and wsem (we
directly lock x using atomic local transitions) Furthermore, we use countR and
countW to model variables readcount and writecount, resp.

Location test1 is used to simulate the first if-then-else on count in the reader’s
code of Fig. 5 (in the enter section). In this example we consider the mutual
exclusion property for readers and writers. Monotonic abstraction cannot verify
this property and returns a spurious counterexample. As shown in Table 1, with
DBM interpolant solver, our CEGAR method automatically checks the property
for any number of readers and writers after 1 step of refinement for a total
execution time less than 4 seconds.

A.3 Sleeping Barber

The sleeping barber problem is a classic inter-process communication and syn-
chronization problem between multiple operating system processes. The prob-

int readcount , wr i tecount = 0 ;
semaphore rsem , wsem , x , y , z = 1 ; //

void reader (){
while (1){

wait (z) ;
wait (rsem) ;

wait (x) ;
readcount++;
i f (readcount==1) wait (wsem) ;

s i g n a l (x) ;
s i g n a l (rsem) ;

s i g n a l (z) ;
doReading () ;
wait (x) ;

readcount−−;
i f (readcount==0) s i g n a l (wsem) ;

s i g n a l (x) ;
}

}

void w r i t e r (){
while (1){

wait (y) ;
wr i tecount++;
i f (wr i tecount==1) wait (rsem) ;

s i g n a l (y) ;
wait (wsem) ;
doWriting () ;
s i g n a l (wsem) ;
wait (y) ;

writecount−−;
i f (wr i tecount==0) s i g n a l (rsem) ;

s i g n a l (y) ;
}

}

Fig. 7. Reader/writers with priority to writers.

lem is analogous to that of keeping a barber working when there are customers,
resting when there are none and doing so in an orderly manner. The barber
and his customers represent aforementioned processes. As shown in Fig. 13, the
most common solution involves using three semaphores: one for any waiting
customers, one for the barber (to see if he is idle), and the third ensures mu-
tual exclusion. When a customer arrives, he attempts to acquire the mutex, and
waits until he has succeeded. The customer then checks to see if there is an
empty chair for him (either one in the waiting room or the barber chair), and
if none of these are empty, leaves. Otherwise the customer takes a seat thus
reducing the number available (a critical section). The customer then signals
the barber to awaken through his semaphore, and the mutex is released to allow
other customers (or the barber) the ability to acquire it. If the barber is not
free, the customer then waits. The barber sits in a perpetual waiting loop, being
awakened by any waiting customers. Once he is awoken, he signals the waiting
customers through their semaphore, allowing them to get their hair cut one at
a time. We model this concurrent program using the parameterized system in
Fig. 12. We use shared variables cust and barber to model the corresponding
generic semaphore. Furthermore, we use variable mutex to model the mutex
with the same name. Furthermore, to emphasize the similarities with the other
example, we use a shared counter avail to model the current number of avail-
able chairs (i.e. avail = N − waiting). We also introduce a counter chair that

Shared : lockZ, lockR, lockW ∈ 0, 1, countR, countW : int

Reader :
think −→ waitR1 : lockZ = 1, lockZ′ = 0
waitR1 −→ waitR2 : lockR = 1, lockR′ = 0
waitR2 −→ read : countR = 0, lockW = 1,

countR′ = 1, lockW ′ = 0, lockZ′ = lockR′ = 1
waitR2 −→ read : countR >= 1, lockZ′ = 1, lockR′ = 1
read −→ think : countR = 1, countR′ = 0, lockW ′ = 1
read −→ think : countR >= 2, countR′ = countR− 1

Writer :
think −→ waitW : countW = 0, lockR = 1, lockR′ = 0
think −→ waitW : countW >= 1
waitW −→ write : lockW = 1, lockW ′ = 0, countW ′ = countW + 1
write −→ releaseW : lockW ′ = 1
releaseW −→ think : countW = 1, countW ′ = 0, lockR′ = 1
releaseW −→ think : countW >= 2, countW ′ = countW − 1

Initial state : countW = countR = 0, lockZ = lockW = lockR = 1 • think, think, . . .
Bad states : read, write

Fig. 8. Readers writers with priority to writers.

represent the corresponding resources (they are not used for synchronization but
just to keep track of the physical presence of chairs). N is here a parameter (i.e.
a shared variable that is never updated). Location skip indicates the failure of
the test avail = 0 in the body of the code of a customer. If location skip the
customer releases the mutex and goes back to the initial state.

In this example we would like to verify that the counter avail is coherent with
the current number of available resources (chair), i.e., that it never happens that
a customer is in location skip while chair ≥ 1. Monotonic abstraction cannot
verify this property and returns a spurious counterexample. As shown in Table
1, our CEGAR method automatically checks the property for any number of
customers and for any value assigned to N . The test requires 1 step of refinement
for a total execution time of about 4 seconds.

A.4 Reference Counting

Other interesting case-studies come from the applications that use reference
counting to maintain consistent information of data shared among different pro-
cesses/processors [22]. The scheme is based on the following idea. For each shared
resource, the resource manager keeps track of the current number of references
by using a counter. Critical operations are executed only when the reference
counter is zero. Instances of this scheme can be found in several file systems
(e.g. reference counter associated to Unix inodes), virtual memory manager (e.g.
to keep track of uses of physical pages), and multiprocessor systems In this sec-
tion we present as a case study the analysis of the virtual memory manager

const int CHAIRS = 5 ;
semaphore customers , barbers =0,
mutex mutex = 1 ;
int wait ing = 0 ;

void barber (){
while (1) {

wait (customers) ;
wait (mutex) ;
wa i t ing = wait ing − 1 ;
s i g n a l (barbers) ;
s i g n a l (mutex) ;
c u t h a i r () ;

}
}

void customer (){
while (1) {

wait (mutex) ;
i f (wa i t ing < CHAIRS) {

wait ing++;
s i g n a l (customers) ;
s i g n a l (mutex) ;
wait (barbers) ;
g e t h a i r c u t () ;

}
else s i g n a l (mutex) ;

}}

Fig. 9. Sleeping barber.

described in [22]. The manager uses a table of counter to associate the number
of references to each physical page. Process environments maintain a local page
table in which virtual pages are associated to physical pages. Environments are
created and deallocated dynamically. They can be linked together to form a vir-
tual address space. They can request to map a physical page to a given virtual
page, to unmap a virtual page, to map a physical page to another environment.
Critical operations on physical pages are performed only if the corresponding
counter is zero.

To model this application, we consider as our starting point the pmap.c
program manually enriched with assertions (with skolem constants) described in
[22]. The assertions can be used here to extract a parameterized model of the
virtual memory manager in which the number of environments and the value of
counters is not fixed a priori. More specifically, we fix a given physical page P
(referenced object). We consider then two types of environments: env0 if P is not
mapped in its virtual address, env1 if P is mapped in its virtual address. We then
keep a reference counter rc for keeping track of the number of environments that
have a reference to P (for each environment we count the presence of P in its page
table). As in the pmap.c program in [22] we consider a main program that non-
deterministically invoke the functionalities of the manager, i.e., (de)allocation
of a new environment, allocation of a virtual address, (un)mapping of a virtual
address, and a special state used to check consistency of the reference counting
scheme.

The main loop is modelled with the help of a monitor process that has
states loop, env alloc, Processes can synchronize using rules of the form

Parameter : N ≥ 1
Shared : mutex ∈ {0, 1}, barb, cust, avail, chair : int

Barber :
b0 −→ b1 : cust >= 1, cust′ = cust− 1,mutex = 1,mutex′ = 0
b1 −→ b2 : avail < N, avail′ = avail + 1, chair′ = chair + 1
b2 −→ b3 : barb′ = barb+ 1,mutex′ = 1
b3 −→ b0

Customer :
c0 −→ c1 : mutex = 1,mutex′ = 0
c1 −→ skip : avail = 0
skip −→ c0 : mutex′ = 1
c1 −→ c2 : avail ≥ 1, chair ≥ 1,

chair′ = chair − 1, avail′ = avail − 1, cust′ = cust+ 1,mutex′ = 1
c2 −→ c3 : barb ≥ 1, barb′ = barb− 1
c3 −→ c0

Initial state : cust = barb = 0, avail = chair = N,mutex = 1 • b0, c0, . . . , c0
Bad states : chair ≥ 1 • skip

Fig. 10. Sleeping Barber.

p1, . . . , pn −→ p′1, . . . , p
′
n : ϕ, meaning that process in state pi moves to p′i

for i : 1, . . . , n provided ϕ is satisfied. Creation and deletion is modelled by pro-
ducing or consuming a state. For instance, creation of environments is modelled
with a synchronization rule in which the monitor moves back to loop and a new
process with state env0 is created. Deallocation of an environment of type env0

simply removes it from the current configuration. For environments of type env1

we also have to decrement rc. The other operations is modelled from the perspec-
tive of a generic environment of type env0/env1, of page P and of its reference
counter rc. For instance, the allocation of a physical page pp to a virtual page
vp gives rise to several cases: vp can be already mapped to P , unmapped or
mapped to another page. pp can be either P or another physical page. If pp = P
an environment moves to state env1. In the first rule we assume that P does not
occur in its vm so we have to increment rc. In the second rule we assume that P
is already present. In the third rule we assume that pp 6= P but P is already in
the vm. Thus, we have to decrement rc and move to env0. The other operations
are modelled in the same spirit.

In this example we would like to verify that the counter rc is coherent with the
current number of environments that have references to P , i.e., it is not possible
to fire last transition and reach a configuration with at least one occurrence
of process bad. As in the other example, monotonic abstraction cannot verify
this property. Indeed, it returns a counterexample due to the loss of synchrony
between rc and the number of env1 processes in the abstract transition relation
with unconstrained relation. However, as shown in Table 1, our CEGAR method
automatically checks the property for any number of customers and for any value

typedef struct env {
int env mypp ;
int env pgd i r [NVPAGES] ;
. . .

} env t ;

int pages [NPPAGES] ;
. . .
int p a g e a l l o c (env t ∗env , int vp) {

int pp = p a g e g e t f r e e () ;
i f (pp < 0) return −1;
i f (env−>env pgd i r [vp] >= 0) pages [env−>env pgd i r [vp]]−−;
env−>env pgd i r [vp] = pp ;
pages [pp]++;
return 0 ;

}
. . .
int page unmap (env t ∗env , int vp) {

i f (env−>env pgd i r [vp] >= 0) {
pages [env−>env pgd i r [vp]]−−;
env−>env pgd i r [vp] = −1;

}
}
. . .

Fig. 11. Fragment of pmap.c example.

assigned to N . The test requires 1 step of refinement for a total execution time
of 0.1 second.

A.5 Reference-counting Garbage Collection

Garbage Collection is the automatic reclamation of computer storage [10]. In
many systems, programmers must explicitly reclaim heap memory at some point
in the program, by using a “free” statement. Systems with a garbage collector
free the programmer from this burden. The garbage collector is used to find data
objects that are no longer in use and make their space available for reuse by the
running program. An object is considered garbage (and subject to reclamation)
if it is not reachable by the running program via any path of pointer traversals.
Live (potentially reachable) objects are preserved by the collector, ensuring that
the program can never traverse a dangling pointer into a deallocated object.

There are essentially two types of garbage collectors: tracing garbage col-
lectors and reference-counting garbage collectors. For that latter, each object
keeps a count of the number of references to it. An object’s reference count is
incremented when a reference to it is created, and decremented when a reference

Let L = {env alloc, env free, page alloc, page map, page unmap, check} in
Shared : rc : int

Main :
loop −→ loc : true for each loc ∈ L
Env alloc :
env alloc −→ loop, env0 : true

Env free :
env free, env0 −→ loop : true
env free, env1 −→ loop : rc >= 1, rc′ = rc− 1

Page alloc :
page alloc, env0 −→ loop, env1 : rc′ = rc+ 1
page alloc, env1 −→ loop, env1 : true
page alloc, env1 −→ loop, env0 : rc >= 1, rc′ = rc− 1
page alloc, env0 −→ loop, env0 : true

Page map :
page map, env0, env0 −→ loop, env0, env0 : true
page map, env0, env1 −→ loop, env1, env1 : rc′ = rc+ 1
page map, env0, env1 −→ loop, env1, env0 : rc >= 1
page map, env0, env1 −→ loop, env0, env0 : rc >= 1, rc′ = rc− 1
page map, env0, env1 −→ loop, env0, env1 : true
page map, env1, env1 −→ loop, env1, env1 : true

Page unmap :
page unmap, env0 −→ loop, env0 : true
page unmap, env1 −→ loop, env0 : rc >= 1, rc = rc− 1
page unmap, env1 −→ loop, env1 : true

Check consistency :
check, env1 −→ loop, env1, bad : rc = 0

Initial state : loop, env0, . . . , env0, . . .
Bad states : bad ≥ 1

Fig. 12. A Parameterized Model for the Pmap Example in [22].

is destroyed. The object should be garbage (and therefore reclaimed) when the
reference count reaches zero.

A reference counting garbage collector must devise a special algorithm to
reclaim cyclic garbage. We verified the algorithm of Bacon et al. [10], without
the cyclic garbage collector. This garbage collector is a concurrent system (ie.
it runs concurrently with other threads on other processors, as opposed to a
stop-the-world garbage collector), but not parallel (ie. it is a single-threaded
application). Objects are allocated with a reference count 1. Each thread running
on some processor performs updates to objects on the heap and depending on
its type, the update is enqueued as an increment or a decrement into respective
buffers. When appropriate, a garbage collection is triggered, and the collector
thread is scheduled on the first processor. It simply collects the increments and
decrements that were differed in the buffers by the threads running on that

Trigger (){
i f (! TestAndSet (GCLock))

Schedule (NextEpoch , 1)
return true

else
return fa lse

}

NextEpoch (){
i f (CPU. Id < NCPU)

ProcessEpoch ()
SynchronizeMemory () // to see the b u f f e r updates
Schedule (NextEpoch ,CPU. Id+1)

else
C o l l e c t ()

}

C o l l e c t (){
Process Increments ()
ProcessDecrements ()
// Co l l e c tCyc l e s ()
Not i fy (CPU. Epoch)
FetchAndStore (GCLock , 0)
CPU. Epoch = CPU. Epoch + 1

}

Fig. 13. Reference-Counting Garbage Collector.

processor. It then prepares the processor for the next garbage collection (such
as allocating new buffers and restarting the interrupted thread) and schedules
itself on the next processor. When it arrives at the last processor, it performs
the collected increments and decrements on the reference counts. It is the only
thread to update the reference counts.

This garbage collector is a producer/consumer system: the running threads
produce operations on reference counts, which are placed into buffers and peri-
odically turned over to the collector. We model this concurrent system using the
parameterized system in Fig. 14. Any thread can perform update to heap objects
but the increments and decrements are buffered and only processed when the
garbage collection is triggered. There is a lock to prevent two garbage collections
to be triggered at the same time, but we do not need to model it in our model.
We distinguish 3 modes: a normal mode (n) in the case the garbage collection
is not triggered and two phases for the garbage collection. In order to avoid
data races, increments are performed first (mode g1), and then decrements are
performed (mode g2).

We keep userV and rcV as the number of references and the reference count
respectively for a given object V . We would like to verify that the count rcV

Shared : n, g1, g2, userV, rcV, incV, decV : int
Normal mode :
Enqueue Increment : n −→ n : userV ′ = userV + 1, incV ′ = incV + 1
Enqueue Decrement : n −→ n : userV ′ = userV − 1, decV ′ = decV + 1
Trigger GC : n −→ g1

Garbage mode :
Process Increment : g1 −→ g1 : incV ′ = incV − 1, rcV ′ = rcV + 1
Start G2 : g1 −→ g2 : incV = 0
Process Decrement : g2 −→ g2 : decV ′ = decV − 1, rcV ′ = rcV − 1
End GC : g2 −→ n : decV = 0

Initial state : n = 1, g1 = g2 = 0, incV = decV = 0
Bad states : g2 = 1, userV ≥ 1 • rcV = 0

Fig. 14. Model for Reference-Counting Garbage Collector.

never reaches zero while there are references to the object (userV), ie. that
an object has been reclaimed while threads are still using it. Note that while
the collector thread is in mode g1 or g2, the threads from other processors are
on mode n and can enqueue increments and decrements, but they would be
enqueued into other buffers.

A.6 Missionaries and Cannibals

The missionaries and cannibals problem is to decide whether it is possible for
three missionaries and three cannibals to cross a river using a boat, under the
constraints that 1) the boat can carry at most three people, and 2) for both
banks and in the boat, there cannot be more cannibals than missionaries. An
example is described in Fig. 15. For the missionaries and cannibals, we use shared
variables ml,mr, cl, cr to record their numbers on the banks, and use mb, cb to
record their numbers in the boat. maxb is a constant upper-bounding the number
of people in the boat. We use a state variable to represent the current position
of the boat, which is either the left bank or the right bank. Given that the
constraints are met, the boat can choose one of the following two atomic actions
in each step: loading one person, or crossing the river and then unloading all
passengers. In the example, the initial values of ml and cl are parameterized by
M = 3 and C ≥ 3, respectively. 2 This means that the total number of cannibals
is C ≥ 3, and the total number of missionaries is M = 3. Now the problem
reduces to verify that if the configuration {mr = M, cr = C} is reachable from
the initial configuration {ml = M, cl = C}. Monotonic abstraction cannot verify
this property and returns a spurious counterexample. On the other hand, our
CEGAR method automatically checks the property for instances (M = 1, C ≥
2 Note that the parameterization here does not mean a generalization. Indeed, in-

stances (M ≥ m,C ≥ c) and (M ≥ m,C = c) always have solutions, while instance
(M = m,C ≥ c) has a solution if and only if (M = m,C = c), the original problem,
has a solution.

Parameter : M = 3, C ≥ 3
Shared : left, right, cl, cr, cb,ml,mr,mb,maxb : int

left −→ left : cl > 0, cb+ 1 < mb, cb+mb < maxb, cb′ = cb+ 1, cl′ = cl − 1
left −→ left : ml > 0, cb < mb+ 1, cb+mb < maxb,mb′ = mb+ 1,ml′ = ml − 1
left −→ right : cr + cb <= mr +mb, cl <= ml, cr′ = cr + cb,mr′ = mr +mb, cb′ = 0,mb′ = 0
right −→ right : cr > 0, cb+ 1 < mb, cb+mb < maxb, cb′ = cb+ 1, cr′ = cr − 1
right −→ right : mr > 0, cb < mb+ 1, cb+mb < maxb,mb′ = mb+ 1,mr′ = mr − 1
right −→ left : cl + cb <= ml +mb, cr <= mr, cl′ = cl + cb,ml′ = ml +mb, cb′ = 0,mb′ = 0

Initial state : ml = M, cl = C,mb = 0, cb = 0,mr = 0, cr = 0,maxb = 3
Accepting state : mr = M, cr = C

Fig. 15. A Model for the Missionaries/Cannibals Problem for M = 3, C ≥ 3.

1), (M ≥ 1, C = 1), (M = 3, C ≥ 3) and (M ≥ 3, C = 3) in a reasonable time,
as shown in Table 2 and Table 3. It is observed that the refining procedure takes
more time as parameters m, c increase. We tested the four instances on the ALV
tool [14], Interproc [26] and FASTer [11]. 3 These tools gave outputs similar to
those stated in Table 2 and none of the instances were verified.

Model Time #ref #cons

M = 1, C ≥ 1 0.1 sec 3 86

M ≥ 1, C = 1 0.2 sec 3 46

M = 3, C ≥ 3 45 min 59 sec 12 3871

M ≥ 3, C = 3 77 min 8 sec 14 18094

Table 3. Running Times of the Missionaries/Cannibals Model, with different m and
c. Each result is obtained on an Intel Xeon 2.66GHz processor with 8GB memory,
using the CLP-prover [31] as the interpolant solver. Time is the execution time of the
program, measured by the bash Time command. #ref is the number of refinements
needed to verify the property. #cons is the total number of constraints generated by
the reachability checker. It can be observed that verification is more difficult for our
approach as m and c get larger.

A.7 The Swimming Pool Protocol

The swimming pool protocol is a Petri net with 6 transitions and 6 variables
studied in [25]. It is proved by hand in [18] and verified automatically in [11]
that, for two non-negative parameters Q1, Q2 and initial values x1 = x2 = x3 =

3 For FASTer, we tested our examples with libraries Mona, Lash and Omega, and
applied forward and backward search strategies in turn. For the other tools, we just
used the default settings.

Parameter : Q1 ≥ 0, Q2 ≥ 0
Shared : left, right, cl, cr, cb,ml,mr,mb,maxb, k : int

init −→ init : x6 > 0, x′1 = x1 + 1, x′6 = x6 − 1, k′ = k − 1
init −→ init : x1 > 0, x7 > 0, x′1 = x1 − 1, x′7 = x7 − 1, x′2 = x2 + 1, k′ = k − 1
init −→ init : x2 > 0, x′2 = x2 − 1, x′3 = x3 + 1, x′6 = x6 + 1, k′ = k − 1
init −→ init : x3 > 0, x6 > 0, x′3 = x3 − 1, x′6 = x6 − 1, x′4 = x4 + 1, k′ = k − 1
init −→ init : x4 > 0, x′4 = x4 − 1, x′5 = x5 + 1, x′7 = x7 + 1, k′ = k − 1
init −→ init : x5 > 0, x′5 = x5 − 1, x′6 = x6 + 1, k′ = k − 1

Initial state : x1 = 0, x2 = C, x3 = 0, x4 = 0, x5 = 0, x6 = Q1, x7 = Q2

Bad state : x2 = x4 = x5 = x6 = x7 = 0

Fig. 16. Modeling a variant of the swimming pool protocol.

x4 = x5 = 0, x6 = Q1, x7 = Q2, the protocol has a deadlock regardless of the
values of Q1 and Q2. We take a benchmark from [11] that models this protocol,
which can be represented using the parameterized system in Fig. 16. We verify
a weaker property that there exist some Q1 ≥ 1, Q2 ≥ 1 such that a certain
deadlock x2 = x4 = x5 = x6 = x7 = 0 occurs. Monotonic abstraction cannot
verify this property and returns a spurious counterexample. On the other hand,
our method automatically checks the property in a reasonable time. As shown
in Table 1, the CEGAR method automatically checks the property for Q1 ≥ 1
and Q2 ≥ 1 after 2 steps of refinement for a total execution time of 0.2 seconds.
Table 4 shows that the time needed for verification grow very fast as the values
of Q1 and Q2 increase. We tested this model for Q1 = 1, Q2 = 1 on the ALV tool
[14], Interproc [26] and FASTer [11]. These tools failed to verify the property
and gave outputs as stated in Table 2.

Model Time #ref #cons

Q1 ≥ 1, Q2 ≥ 1 0.2 sec 2 55

Q1 ≥ 2, Q2 ≥ 2 12 min 49 sec 14 35220

Q1 ≥ 3, Q2 ≥ 3 > 100 min - -
Table 4. Running Times of the Variant Swimming Pool Protocols, with different Q1

and Q2. Each result is obtained on an Intel Xeon 2.66GHz processor with 8GB memory.
Time is the execution time of the program, measured by the bash Time command. #ref
is the number of refinements needed to verify the property. #cons is the total number
of constraints generated by the reachability checker. It can be observed that verification
is more difficult for our approach as Q1 and Q2 get larger.

B Proof of Lemmas

Proof (Lemma 3). For any infinite sequence X = 〈x1, x2, · · · 〉, let SX be a sub-
sequence of X obtained by eliminating elements not in S. If |SX | = ∞, note
that �S is a WQO on SX , due to the fact that for x, y ∈ S, y �S x iff y � x,
and the fact that � is a WQO on SX . If |SX | <∞, note that �S is a WQO on
X/SX , due to the fact that for x, y 6∈ S, y �S x iff y � x, and the fact that �
is a WQO on X/SX . In both cases, there exist i < j and xi, xj ∈ X such that
xi � xj . Therefore �S is a WQO on C.

