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ABSTRACT
We introduce a novel technique for verification and model
synthesis of sequential programs. Our technique is based
on learning a regular model of the set of feasible paths in
a program, and testing whether this model contains an in-
correct behavior. Exact learning algorithms require check-
ing equivalence between the model and the program, which
is a difficult problem, in general undecidable. Our learning
procedure is therefore based on the framework of probably
approximately correct (PAC) learning, which uses sampling
instead and provides correctness guarantees expressed using
the terms error probability and confidence. Besides the ver-
ification result, our procedure also outputs the model with
the said correctness guarantees. Obtained preliminary ex-
periments show encouraging results, in some cases even out-
performing mature software verifiers.

1. INTRODUCTION
Formal verification of software aims to prove software

properties through rigorous mathematical reasoning. Con-
sider, for example, the C statement assert(x > 0) spec-
ifying that the value of the variable x must be positive.
If the assertion is formally verified, it cannot be violated
in any possible execution during runtime. Formal verifica-
tion techniques are, however, often computationally expen-
sive. Although sophisticated heuristics have been developed
to improve scalability of the techniques, formally verifying
real-world software is still considered to be impractical.

A common technique to ensure quality in industry is soft-
ware testing. Errors in software can be detected by explor-
ing different software behaviors via injecting various testing
vectors. Testing cannot, however, guarantee software is free
from errors. Consider again the assertion assert(x > 0).
Unless all system behaviors are explored by testing vectors,
it is unsound to conclude that the value of x is always posi-
tive. Various techniques have been proposed to improve its
coverage, but it is an inherent feature of software testing
that it cannot establish program properties conclusively.

In this paper, we propose a novel learning-based approach
that aims to balance scalability and coverage of existing soft-
ware engineering techniques. In order to be scalable, as for
software testing, our new technique explores only a subset of
all program behaviors. Moreover, we apply machine learn-
ing to generalize observed program behaviors for better se-
mantic coverage. Our technique allows software engineers
to combine scalable testing with high-coverage formal anal-
yses and improve the quality assurance process. We hope

that this work reduces the dichotomy between formal and
practical software engineering techniques.

In our technical setting, we assume programs are an-
notated with program assertions. A program assertion is
a Boolean expression intended to be true every time it is
encountered during program execution. Given a program
with assertions, our task is to check whether all assertions
evaluate to true on all possible executions. In principle, the
problem can be solved by examining all program executions.
It is, however, prohibitive to inspect all executions exhaus-
tively since there may be infinitely many of them. One way
to simplify the analysis is to group the set of program exe-
cutions to paths of a control flow graph.

A control flow graph (CFG) is derived from the syntactic
structure of a program source code. Each execution of a pro-
gram corresponds to a path in its control flow graph. One
can therefore measure the completeness of software testing
on CFGs. Line coverage, for instance, gives the ratio of ex-
plored edges in the CFG of the tested program, while branch
coverage is the ratio of explored branches of this CFG. Note
that such syntactic measures of code coverage approximate
program executions only very roughly. Executions that dif-
fer in the number of iterations in a simple program loop have
the same line and branch coverages, although their compu-
tation may be drastically different. A full syntactic code
coverage does not necessarily mean all executions have been
explored by software testing.

Observe that program executions traversing the same path
in a CFG perform the same sequence of operations (although
maybe with different values). Consider a path corresponding
to a program execution in a CFG. Such a path can be char-
acterized by the sequence of decisions that the execution
took when traversing conditional statements in the CFG.
We call a sequence of such decisions a decision vector. A de-
cision vector is feasible if it represents one or more (possibly
infinitely many) program executions, and infeasible if it rep-
resents a sequence of branching choices than can never occur
in an execution of the program. To check whether all asser-
tions evaluate to true on all executions, it suffices to examine
all feasible decision vectors and check they do not represent
any assertion-violating program execution. Although feasi-
bility of a decision vector can be determined by using an off-
the-shelf Satisfiability Modulo Theories (SMT) solver, the
set of feasible decision vectors is in general difficult to com-
pute exactly. Therefore, we apply algorithmic learning, in
particular the framework of probably approximately correct
learning, to construct a regular approximation of this set.
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Within the framework of probably approximately correct
(PAC) learning with queries, learning algorithms query
about target concepts to construct hypotheses. The con-
structed hypotheses are then validated by sampling. If a hy-
pothesis is invalidated by witnessing a counterexample,
learning algorithms refine the invalidated hypothesis by the
witness and more queries. If, on the other hand, a hypothe-
sis conforms to all samples, PAC learning algorithms return
the inferred hypothesis with statistical guarantees. In our
approach, we adopt a PAC learning algorithm with queries
to infer a regular language approximation to the set of fea-
sible decision vectors of a program.

To grasp the statistical guarantees provided by PAC learn-
ing, consider the task of checking defects in a large shipment
using uniform sampling. Because of the size of the shipment,
it is impractical to check every item. We instead want to
know, with a given confidence δ, if the defect probability is
at most ǫ. This can be done by selecting r (to be deter-
mined later) randomly chosen items. If all chosen items are
good, the method reports that the defect probability is at
most ǫ. We argue the simple method can err with proba-
bility at most 1 − δ. Suppose r randomly chosen items are
tested without any defect, but the defect probability is, in
fact, more than ǫ. Under this thesis, the probability that r
random items are all good is lower than (1 − ǫ)r. That is,
the method is incorrect with probability lower than (1− ǫ)r.
Take r such that (1−ǫ)r < 1−δ. The simple method reports
incorrect results with probability at most 1 − δ; we equiva-
lently say the result of the method is PAC (ǫ, δ)-correct.

Using a similar argument, it can be shown that our PAC
learning algorithm returns a regular set approximating the
set of feasible decision vectors of the program with the error
probability ǫ and confidence δ of our choice. If the inferred
set contains no decision vector representing an assertion-
violating program execution, our technique concludes the
verification with statistical guarantees about correctness.

Our learning-based approach finds a balance between for-
mal analysis and testing. Rather than exploring program
behaviors exhaustively, our technique infers an approxima-
tion of the set of feasible decision vectors by queries and
sampling. Although the set of feasible decision vectors is
in general not computable, PAC learning with queries may
still return a regular set approximation of it with a quantified
guarantee. Such an approximate model with statistical guar-
antees can be useful for program verification. With an ap-
proximate model that is PAC (ǫ, δ)-correct and proved to be
free from assertion violation, one can conclude that the pro-
gram is also PAC (ǫ, δ)-correct. The statistical guarantees
are different from syntactic code coverages in software test-
ing. Recall that our application of PAC learning works over
decision vectors. Decision vectors in turn represent program
executions. When our technique does not find any assertion
violation, the statistical guarantees give software engineers
a semantic coverage about program executions. Along with
conventional syntactic coverages, such information may help
software engineers estimate the quality of software.

We implement a prototype, named Pac-Man (PAC
learning-based Model synthesizer and ANalyzer), of our pro-
cedure based on program verifiers CPAchecker, CBMC,
and the concolic tester Crest. We evaluate the proto-
type on the benchmarks from the recursive category of SV-
COMP 2015 [1]. The results are encouraging—we can find
all errors that can be found by Crest. We also provide

quantified guarantee accompanied by a faithful approximate
model for several examples that are challenging for program
verifiers and concolic testers. This approximate model can
later be reused, e.g., for verifying the same program with
a different set of program assertions.

Our contributions are summarized in the following:

• We show the PAC learning algorithm can be applied
to synthesize a faithful approximate model of the set
of feasible decision vectors of a program. Such a model
can be useful in many different aspect of program veri-
fication (cf. Section 12 for details). We believe it is not
hard to adopt our approach to handle different type of
systems (e.g., black box systems) and to obtain ap-
proximate models on a different level of abstraction
(e.g., on a function call graph).

• We develop a verification procedure based on the ap-
proximate model obtained from PAC learning. The
procedure integrates the advantages of both testing
and verification. It uses testing techniques to col-
lect samples and catch bugs. The PAC learning al-
gorithm generalizes the samples to obtain an approxi-
mate model that can then be analyzed by verification
techniques for statistical guarantees.

2. PRELIMINARIES
Let X be the set of program variables and F the set of

function and predicate symbols. We use X ′ for the set {x′ |
x ∈ X}. The set T [X ,F ] of transition formulae consists
of well-formed first-order logic formulae over X ,X ′, and F .
For a transition formula f ∈ T [X ,F ] and n ∈ N, we use

f 〈n〉 to denote the formula obtained from f by replacing
all free variables x ∈ X and x′ ∈ X ′ with x〈n〉 and x〈n+1〉

respectively.
We represent a program with a single procedure using

a control flow graph. (Section 9 extends the notion to pro-
grams with multiple procedures and procedure calls.) A con-
trol flow graph (CFG) is a graph G = (V,E, vi, vr, Ve,XFP )
where V = Vb∪Vs is a finite set of nodes consisting of disjoint
sets of branching nodes Vb and sequential nodes Vs, vi ∈ V
is the initial node, vr ∈ Vs is the return node, Ve ⊆ V is the
set of error nodes, XFP ⊆ X is the set of formal parameters,
and E is a finite set of edges such that E ⊆ V ×T [X ,F ]×V
and the following conditions hold:

• for any branching node vb ∈ Vb, there are exactly
two nodes v′0, v

′
1 ∈ V with (vb, f0, v

′
0), (vb, f1, v

′
1) ∈ E,

where f0, f1 ∈ T [X ,F ] are transition formulae;

• for any non-return sequential node vs ∈ Vs\{vr}, there
is exactly one node v′ ∈ V with (vs, f, v

′) ∈ E; and

• for the return node vr ∈ Vs, there is no v′ ∈ V such
that (vr, f, v

′) ∈ E for any f ∈ T [X ,F ].

We say v′ is a successor of v if (v, f, v′) ∈ E. Assume,
moreover, that the two successors v′0 and v′1 of the branch-
ing node v are ordered. Intuitively, the ‘1’ corresponds to
the if branch and the ‘0’ corresponds to the else branch.
We call v′0 and v′1 the 0-successor and 1-successor of v re-
spectively. Similarly, f0 and f1 are called the 0-transition
and 1-transition formulae of v. Note that the definition of
a CFG allows us to describe nondeterministic choice, which
is commonly used to model the environment. To be more
specific, a nondeterministic choice from a branching node v
can be represented by defining both the 0-transition and
1-transition formulae of v as

∧

x∈X x = x′.



A path in the CFG G is a sequence π =
〈v0, f1, v1, f2, v2, . . . , fm, vm〉 such that v0 = vi and
(vj , fj+1, vj+1) ∈ E for every 0 ≤ j < m. The path π is

feasible if the path formula
∧m

k=1
fk

〈k〉 is satisfiable. It is an
error path if vj ∈ Ve for some 0 ≤ j ≤ m. The task of our
analysis is to check whether G contains a feasible error path.

A sequence w = a1a2 · · · an with aj ∈ {0, 1} for 1 ≤ j ≤ n
is called a word over {0, 1}. The length of w is |w| = n.
The word of length 0 is the empty word λ. We also use w[j]
to denote the j-th symbol aj . If u, w are words over {0, 1},
u · w denotes the concatenation of u and w. A language L
over {0, 1} is a set of words over {0, 1}.

We introduce the function decision that maps a path π
of G to a sequence of decisions made in the branching
nodes traversed by π. Formally, decision is a function from
paths to words over {0, 1} defined recursively as follows:
decision(〈v0, f1, v1, f2, v2, . . . , fm, vm〉) = decision(〈v0, f1〉) ·
decision(〈v1, f2, v2, . . . , fm, vm〉) such that

decision(〈v〉) = λ

decision(〈v, f〉) =



















λ if v ∈ Vs,
0 if v ∈ Vb and

f is the 0-transition formula of v,
1 if v ∈ Vb and

f is the 1-transition formula of v.

For a path π, decision(π) is the decision vector of π. We lift
decision to a set of paths Π and define decision vectors of Π
as decision(Π) = {decision(π) | π ∈ Π}.

A finite automaton (with λ-moves) A is a tuple A =
(Σ, Q, qi,∆, F ) consisting of a finite alphabet Σ, a finite
set of states Q, an initial state qi ∈ Q, a transition rela-
tion ∆ ⊆ Q × (Σ ∪ {λ}) × Q, and a set of accepting states
F ⊆ Q. A transition (q, λ, q′) ∈ ∆ is called a λ-transition.
A word w over Σ is accepted by A if there are states
q0, . . . , qm ∈ Q and symbols (or λ’s) a1, . . . , am ∈ (Σ∪{λ}),
such that w = a1 · · · am, for every 0 ≤ j < m there is
a transition (qj , aj+1, qj+1) ∈ ∆, and further q0 = qi and
qm ∈ F . The language of A is defined as L(A) = {w |
w is accepted by A}. A language R is regular if R = L(A)
for some finite automaton A. The finite automaton A is de-
terministic if its transition relation is a function from Q×Σ
to Q. For any finite automaton A, there exists a determin-
istic finite automaton (DFA) B such that L(A) = L(B).

A pushdown automaton (PDA) is a tuple P =
(Σ, Q,Γ, qi,∆, F ) where Σ is a finite input alphabet, Q is
a finite set of states, Γ is a finite stack alphabet, qi ∈ Q
is the initial state, F ⊆ Q is the set of final states, and
∆ ⊆ Q× (Σ ∪ {λ})× (Γ ∪ {λ})× (Γ ∪ {λ})×Q is a transi-
tion relation. We use (q, [a; b/c], q′) to denote the transition
(q, a, b, c, q′), and we sometimes simplify (q, [a;λ/λ], q′) to
(q, a, q′). We define a configuration of P as a pair (q, γ) ∈
Q×Γ∗. A word w over Σ is accepted by P if there exists a se-
quence of configurations (q0, γ0), . . . , (qm, γm) ∈ Q×Γ∗ and
a sequence of symbols (or λ’s) a1, . . . , am ∈ (Σ ∪ {λ}), such
that w = a1 · · · am, q0 = qi, γ0 = ǫ, qm ∈ F , and for every
0 ≤ j < m it holds that there are some bj , bj+1 ∈ (Γ ∪ {λ})
and γ′

j , γ
′
j+1 ∈ Γ∗ such that γj = bjγ

′
j , γj+1 = bj+1γ

′
j+1, and

there is (qj , [aj+1; bj/bj+1], qj+1) ∈ ∆. The language of P is
defined as L(P ) = {w | w is accepted by P}.

3. OVERVIEW
In this section, we give an overview of our verification pro-

cedure. Let G be a CFG of a program. Our goal is to check

PAC Automata Learning Algorithm

(Section 4)

Mechanical Teacher

Resolving Mem-
bership Queries

(Section 6)

Resolving Equiv-
alence Queries by

Sampling (Section 5)

Found a feasible error decision vector

The system is PAC (ǫ, δ)-correct

Mem(w) yes/no Equ(C) counterexample

Figure 1: Components of our verification procedure

whether there is a feasible error path in G. More concretely,
consider the set Π of feasible paths in G and the set B of
error paths in G. We call the languages decision(Π) and
decision(B) over the alphabet {0, 1} as feasible decision vec-
tors and error decision vectors respectively. The program is
correct if the intersection decision(Π)∩decision(B) is empty,
i.e., if G contains no feasible error path.

Representation of the language decision(Π) of all feasible
decision vectors in G is not so easy. In general, this lan-
guage may not be regular or even computable. In our pro-
cedure, we construct a candidate finite automaton C that
approximates decision(Π), the set of feasible decision vec-
tors of G. We infer C using a probably approximately correct
(PAC) online automata learning algorithm [2]. The use of
PAC learning provides us with statistical guarantees about
the correctness of C—we can claim that C is PAC (ǫ, δ)-
correct, i.e., with confidence δ, the deviation of L(C) from
decision(Π) is less than ǫ (we give a proper explanation of
the terms in Section 4).

On the other hand, it is straightforward to convert G to
a finite automaton B accepting the set of all error decision
vectors decision(B). Intuitively, states of B correspond to
nodes of G, the initial state of B corresponds to the initial
node of G, and accepting states of B correspond to G’s error
nodes. An edge from a sequential node is translated to a
λ-transition. For a branching node, the edges to its 0- and
1-successors are translated to transitions over symbols 0 and
1 respectively (cf. Section 7).

A high-level overview or our learning procedure is given
in Figure 1 (the procedure is similar in structure to the one
of [2]). It consists of two main components: The learning
algorithm asks the teacher two kinds of questions: mem-
bership (“Is a given decision vector feasible?”) and equiv-
alence (“Is a given candidate finite automaton PAC (ǫ, δ)-
correct?”) queries. The teacher resolves the queries, at the
same time observing whether some of the tested decision vec-
tors corresponds to a feasible error path. By posing these
queries, either the learning algorithm iteratively constructs
a PAC (ǫ, δ)-correct approximation of decision(Π) or our pro-
cedure finds a feasible error decision vector.

As with other online learning-based techniques, we need
to devise a mechanical teacher that answers queries from
the learning algorithm. Checking membership queries (i.e.,
membership in the set decision(Π) of feasible decision vec-
tors) is relatively easy—for example, given a decision vec-
tor d, we obtain its corresponding path π by unfolding the
CFG G according to d, and use an off-the-shelf solver to
decide whether π is feasible or not (cf. Section 6).



When the automata learning algorithm infers a candidate
finite automaton C, we need to check whether L(C) ap-
proximates decision(Π), i.e., whether C is PAC (ǫ, δ)-correct.
Since we cannot compare decision(Π) with L(C) directly, we
employ the sampling-based approximate equivalence tech-
nique of PAC learning. While generally unsound, the tech-
nique still provides statistical guarantee about the correct-
ness of the inferred model (details are given in Section 5).

4. PAC AUTOMATA LEARNING
Here we explain the PAC automata learning algorithm

that we use to find an approximation to decision(Π). Clas-
sical PAC automata learning algorithm cannot be used di-
rectly for the purpose of program verification. It has to
be modified to handle the case when the program contains
an error. The classical PAC automata learning algorithm
was obtained from modifying the requirement of the exact
automata learning algorithm [3]. Our modification follows
the same route. In this section, we first describe the classi-
cal “exact”automata learning algorithm of regular languages
and then describe how to modify it for verification. Then we
explain how to relax the requirement of an exact automata
learning algorithm to infer an approximation to decision(Π).

4.1 Exact Learning of Regular Languages
Suppose R is a target regular language such that its de-

scription is not directly accessible. Automaton learning al-
gorithms [2, 18, 14, 5] infer automatically a finite automa-
ton AR recognizing R. The setting of an online learning
algorithm assumes a teacher who has access to R and can
answer the following two types of queries:

• Membership query Mem(w): is the word w a member
of R, i.e., w ∈ R?

• Equivalence query Equ(C): is the language of the finite
automaton C equal to R, i.e., L(C) = R? If not, what
is a counterexample to this equality (a word in the
symmetric difference of L(C) and R)?

The learning algorithm will then construct a finite automa-
ton AR such that L(AR) = R by interacting with the
teacher. Such an algorithm works iteratively: In each it-
eration, it performs membership queries to get information
about R from the teacher. Using the results of the queries,
it proceeds by constructing a candidate automaton C and,
finally, makes an equivalence query Equ(C). If L(C) = R,
the algorithm terminates with C as the resulting finite au-
tomaton AR. Otherwise, the teacher returns a word w dis-
tinguishing L(C) from the target language R. The learning
algorithm uses w to modify the conjecture for the next it-
eration. The mentioned learning algorithms are guaranteed
to find a finite automaton AR recognizing R using a number
of queries polynomial to the number of states of the mini-
mal DFA recognizing R. In the rest of the paper, we denote
“online automata learning” simply as “automata learning”.

4.2 Learning for Program Verification
Under the context of program verification, it may be the

case that decision(Π) ∩ L(B) 6= ∅; in such a case, our pro-
cedure should return a feasible error path in the program.
This is very similar to the setting of learning-based verifica-
tion [11, 9], where the learning algorithm is modified to re-
turn a counterexample in case the system contains an error.

We modified the used learning algorithm in a similar way.
To be more specific, when the classical learning algorithm
poses an equivalence query Equ(C), we first check whether
there exists a decision vector c such that c ∈ L(C) ∩ L(B)
and then test if c ∈ decision(Π).

1. In case that the two tests identified a decision vector
c such that c ∈ L(C) ∩ L(B) and c 6∈ decision(Π),
then c is in the difference of L(C) and decision(Π) and
hence a valid counterexample for the classical learning
algorithm to refine the next conjecture automaton C.

2. In case that the two tests identified a decision vector
c such that c ∈ L(C)∩L(B) and c ∈ decision(Π), then
c is a feasible error decision vector and we report c to
the user.

3. In case that L(C) ∩ L(B) = ∅, the modified learning
algorithm poses an equivalence query Equ(C) to the
teacher.

Given a teacher answers membership and equivalence
queries about decision(Π), the modified automata learning
algorithm has the following properties.

Lemma 1. Assume decision(Π) is a regular set. The
modified automata learning algorithm eventually finds a
counterexample c ∈ L(B) ∩ decision(Π) when L(B) ∩
decision(Π) 6= ∅. It eventually finds a finite automaton rec-
ognizing decision(Π) when L(B) ∩ decision(Π) = ∅.

Observe that when the program does not contain any er-
ror, the behavior of the modified learning algorithm is identi-
cal to the classical one and hence is still an exact automata
learning algorithm. Next we explain how to relax the re-
quirements of the exact automata learning algorithm to ob-
tain a PAC automata learning algorithm that is suitable for
program verification.

4.3 Probably Approximately Correct Learning
The techniques for learning automata we just discussed in

the previous section assume a teacher who has the ability to
answer equivalence queries. Such an assumption is, however,
invalid in our procedure. Checking decision(Π) = L(C) can
be undecidable. Angluin showed in [3] that if we substitute
equivalence queries with sampling, we can still make statis-
tical claims about the difference of the inferred set and the
target set.

Assume that we are given a probability distribution D
over the elements of a universe U , and a hypothesis in the
form

Probw∈U|D [¬ϕ(w)] ≤ ǫ.

In the hypothesis, the term Probw∈U|D [¬ϕ(w)] denotes the
probability that the formula ϕ(w) is invalid for w chosen
randomly from U according to the distribution D. We call ǫ
the error parameter and use the term confidence to denote
the least probability that the hypothesis is correct. We say
that ϕ(w) is PAC (ǫ, δ)-valid if Probw∈U|D [¬ϕ(w)] ≤ ǫ with
confidence δ.

In the setting of automata learning, the considered uni-
verse is Σ∗ and the target regular language is R ⊆ Σ∗.
The task of an equivalence query Equ(C) is changed from
checking exact equivalence, which we can express as check-
ing that ∀w ∈ Σ∗ : w /∈ R ⊖ L(C) (we use ⊖ to de-
note the symmetric difference operator), to checking ap-
proximate equivalence, i.e., checking whether the formula



ϕ(w) = w /∈ R ⊖ L(C) is PAC (ǫ, δ)-valid. In other words,
we check whether Probw∈Σ∗|D [w ∈ R⊖L(C)] ≤ ǫ with con-
fidence δ. For a fixed R and a candidate C, we say that C
is PAC (ǫ, δ)-correct if w /∈ R⊖ L(C) is PAC (ǫ, δ)-valid.

The teacher checks the PAC (ǫ, δ)-correctness of C by pick-
ing r samples according to D and testing if all of them are
not in R⊖L(C). For the i-th equivalence query of the learn-
ing algorithm, the number of samples qi needed to establish
that C is PAC (ǫ, δ)-correct is given by Angluin in [2] as

qi =

⌈

1

ǫ

(

ln
1

1− δ
+ i ln 2

)⌉

. (1)

Since the inferred set C is guaranteed to be PAC (ǫ, δ)-
correct, this approach is termed probably approximately cor-
rect (PAC) learning [21].

5. RESOLVING EQUIVALENCE QUERIES
BY SAMPLING

The current section discusses how to design a mechanism
that the teacher can use for equivalence queries to provide
the PAC (ǫ, δ)-correctness guarantee, as defined in Section 4.
Given a probability distribution D over the set of feasible
decision vectors decision(Π), we can use D to give a formal
definition of the quality of a candidate automaton C. In
particular, we use as a measure the probability with which
a decision vector chosen randomly from decision(Π) (accord-
ing to the distribution D) is contained in C.

A sampling mechanism offering such a distribution must
satisfy the following conditions:

1. Only decision vectors in decision(Π) are sampled.

2. The samples are independent and identically dis-
tributed (IID), i.e., the distribution is fixed and the
probability of sampling a particular element does not
depend on the previously picked samples.

In this paragraph, we introduce the random input sampling
mechanism. We treat all nondeterministic choices and for-
mal parameters of the program as input variables and as-
sume that all input variables are over finite domains. Each
set of initial values of input variables yields a path in the
CFG of the program. Based on this observation, random in-
put sampling works by (1) picking uniformly at random a set
of initial values for input variables of the program and then
(2) obtaining the corresponding decision vector by traversing
the CFG of the program using the picked values. The sam-
pling mechanism forms a distribution such that the proba-
bility of a decision vector d being chosen is proportional to
the number of program paths corresponding to d.

The issue of random input sampling is that it suffers
from the well-known fact that coverage of input values is
not a good approximation of program path coverage. De-
pending on the sizes of input domains of program vari-
ables, some paths might have only a negligible probabil-
ity of being selected—for instance, given two 64-bit integers
x and y, the probability of taking the true branch in the test
x == 0 && y == 0 is equal to 2−128. The situation gets even
worse for input variables over unbounded domains. Even
with an extremely high coverage rate of input variables’ val-
ues, many paths may still not be explored, while other are
explored repeatedly. In order to get a sampling mechanism
with a better distribution over program paths, we developed
a technique that randomly explores program’s paths using

a concolic tester [12, 19, 7], which is an efficient means for
exploring decision vectors corresponding to rare paths.

We describe the technique and prove its properties in the
rest of this section.

5.1 Concolic Testing
Concolic testing is a testing approach that explores paths

in the CFG of a program while searching for bugs. The
algorithm begins with a decision vector generated by ran-
domly picked input values. Then, it finds the next decision
vector by flipping some decision made in the chosen path
and obtains new input values that lead the program execu-
tion according to the new path. This mechanism gives rare
paths a much greater chance to be explored. The selection of
which decision should be flipped depends on the used search
strategy of the tester.

In our procedure, we use the concept of a batched sample.
A batched sample is defined as a set of decision vectors of the
size k (where k is a given parameter) obtained from a con-
colic tester by exploring k paths using its search strategy.
We denote Dk the distribution over elements of (Σ∗)k ob-
tained in this way. Our procedure restarts the concolic tester
after taking every batched sample. The previous point gives
us the guarantee that the probability of taking each batched
sample remains the same during the execution our procedure
(we assume that the concolic tester does not keep state in-
formation between its restarts), and that the distribution
is IID and, therefore, meets condition 2 defined above. The
principal functioning of concolic testers guarantees that con-
dition 1 is also met.

5.2 Generalized Stochastic Equivalence
In this section, we show that our sampling mechanism

using batched samples has the property required for the
PAC (ǫ, δ)-correctness guarantee of the learning algorithm
given in Section 4.3.

Recall that for the set of feasible decision vectors of a pro-
gram decision(Π) and a candidate automaton C inferred by
the learning algorithm using some distribution D over Σ∗,
if the teacher gives the answer yes for the equivalence query
Equ(C), it guarantees with confidence δ that

Probw∈Σ∗|D [w ∈ decision(Π)⊖ L(C)] ≤ ǫ. (2)

Since our sampling technique uses batched samples from the
universe Uk = (Σ∗)k w.r.t. the distribution Dk instead of el-
ements of Σ∗ and distribution D, we need to change the
provided guarantee in our modification of the learning algo-
rithm. If our algorithm answers yes, it guarantees that

ProbS∈Uk|Dk

[∃w ∈ S : w ∈ decision(Π)⊖ L(C)] ≤ ǫ (3)

with confidence δ (we hereafter use the term PAC (ǫ, δ)-
correct to denote this form of guarantee).

When a teacher receives an equivalence query Equ(C),
it uses a concolic tester to obtain qi (given in (1)) batch
samples. For each batch sample S, the teacher checks if
there exists a decision vector w ∈ S such that w /∈ L(C)
(by definition w ∈ decision(Π)). The teacher answers yes if
there is no such w. Otherwise, the teacher checks if w is
an error decision vector and either reports w as a feasible
error decision vector or returns w to the learning algorithm
to refine the next conjecture.

The following lemma shows that if we use the number qi
batched samples for testing the equivalence, we obtain the



modified PAC (ǫ, δ)-correctness guarantee from (3).

Lemma 2. Let ǫ and δ be the error and confidence param-
eters, and R be the target language. If no decision vector
w /∈ L(C) is found in the qi batched samples, then it holds
that C is PAC (ǫ, δ)-correct.

Based on the fact that L(C)∩L(B) = ∅ (the property of the
modified learning algorithm in Section 4.2) and the lemma
above, we obtain the following corollary.

Corollary 1. Let ǫ and δ be the error and confidence
parameters, and R be the target language. If no decision
vector w /∈ L(C) is found in qi batched samples, then it
holds that the program is PAC (ǫ, δ)-correct.

6. RESOLVING MEMBERSHIP QUERIES
In this section, we describe how a membership query

Mem(d) in the algorithm in Figure 1 is discharged by the
teacher. Let Π be the set of feasible paths of a CFG G.
When the learning algorithm asks a membership query
Mem(d), the teacher needs to check whether the decision
vector d is in the set of feasible decision vectors decision(Π).
To answer the query, the teacher first constructs a path
π = 〈v0, f1, v1, f2, v2, . . . , vm−1, fm, vm〉 in G such that

• there are exactly |d| occurrences of branching nodes in
the prefix 〈v0, f1, v1, f2, v2, . . . , vm−1〉 of π,

• if vk is the j-th branching node in π, it holds that
decision(vk, fk+1) = d[j], and

• vm−1 is a branching node.

Recall that π is a feasible path if and only if ϕ =
∧m

j=1
fj

〈j〉

is satisfiable. Therefore, the teacher can simply construct
the formula ϕ from the path π and check its satisfiability
using an off-the-shelf constraint solver.

Alternatively, the teacher can check feasibility by trans-
lating the path into a sequence of program statements (with
conditions removed and substituted by assertions on the val-
ues of the conditions) and asking a symbolic executor or soft-
ware model checker whether the final line of the constructed
program is reachable. The alternative option is easier to im-
plement but usually suffers from some performance penalty.

7. ERROR DECISION VECTORS
Let B be the set of error paths in a CFG. In this section,

we show how we construct a finite automaton accepting the
set of all error decision vectors decision(B) of the given CFG.
This automaton will later be intersected with the automaton
representing the set of feasible paths to determine whether
the CFG contains a feasible error path.

Definition 1. Let G = (Vb ∪ Vs, E, vi, vr, Ve,XFP ) be
a CFG. We define the error trace automaton for G as the
finite automaton B = ({0, 1}, Vb ∪ Vs, vi,∆E, Ve) where ∆E

is defined as follows:

• (v, 0, v′0) ∈ ∆E if v ∈ Vb \ Ve, (v, f0, v
′
0) ∈ E, and v′0 is

the 0-successor of v;

• (v, 1, v′1) ∈ ∆E if v ∈ Vb \ Ve, (v, f1, v
′
1) ∈ E, and v′1 is

the 1-successor of v;

• (v, λ, v′) ∈ ∆E if v ∈ Vs \ Ve and (v, f, v′) ∈ E; and

• (v, 0, v), (v, 1, v) ∈ ∆E if v ∈ Ve.

Informally, B contains a state for every node and a transi-
tion for every edge of G. It reads a symbol in each state cor-
responding to a branching node and performs λ-transitions
for states corresponding to sequential nodes. For every error
node, B reads all remaining symbols and accepts the input
word. It is straightforward to see that B accepts exactly the
set of decision vectors corresponding to error paths in G.

Lemma 3. Let G = (V,E, vi, vr, Ve,XFP) be a CFG and
B the set of error paths in G. Let B be the error trace
automaton for G. It holds that L(B) = decision(B).

In Section 9, we describe an extension of our procedure
to programs with procedure calls. Because representing the
set of error decision vectors using a finite automaton is in
this setting imprecise, the section also discusses an extension
that represents the set of error paths in a program with
procedure calls using pushdown automata.

8. THE MAIN PROCEDURE
We summarize our procedure in this section. Let G be

the CFG of the verified program, k be the size of a batched
sample, ǫ be the error parameter, and δ be the confidence
parameter. The goal of our procedure is to either find a fea-
sible error decision vector of G or show that G is PAC (ǫ, δ)-
correct. In the latter case, we also accompany our answer
with a PAC (ǫ, δ)-correct regular representation of the set of
feasible decision vectors of G. Let Π be the set of feasible
paths of G, Dk be the distribution defined by our sampling
mechanism (cf. Section 5), and L(B) be the set of error de-
cision vectors of G (cf. Section 7).

A detailed flow chart of our procedure can be found in
Figure 2. First, the bottom part of the figure describes our
learning algorithm. We extend the online automata learning
algorithm with two additional tests for verification, as de-
scribed in Section 4.2. In particular, when the automata
learning algorithm outputs a candidate C, before sending
teacher the equivalence query Equ(C), we first test whether
L(C) contains a feasible error decision vector c. In case it
does, we report c as an error. Otherwise, in the case c is
both in L(C) and L(B) but is not feasible, we return c to
the learning algorithm to further refine the conjecture.

The top part of the figure describes our design of a me-
chanical teacher. The task of the teacher is to answer queries
from the learning algorithm. Membership queries of the
form Mem(w) can be answered by constructing the path
corresponding to the decision vector w and the associated
path formula, which is then solved using a constraint solver
(cf. Section 6). Equivalence queries, on the other hand, are
discharged using a concolic tester by checking whether there
is a decision vector s in the set of batched samples S such
that it does not belong to the language of C (cf. Section 5).
If no such a decision vector exists, we conclude that the
program is PAC (ǫ, δ)-correct. Otherwise, we test whether
s ∈ L(B); if this holds, we report that we have found a feasi-
ble error decision vector. In the case s /∈ L(B), it holds that
s is a feasible decision vector in decision(Π) but not in the
language of the current conjecture L(C). If this happens,
we return s to the automata learning algorithm to refine
the conjecture and continue with the next iteration of the
learning loop.

In general, our procedure is not guaranteed to terminate.
When the procedure terminates and reports an error (either
by the teacher or the learning algorithm), a feasible error
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Figure 2: A detailed flow chart of our verification procedure

decision vector is found and the program is reported to be
incorrect. If the teacher approves an approximate finite au-
tomaton C, our procedure reports that C is an approximate
model of decision(Π) w.r.t. the PAC (ǫ, δ)-correctness guar-
antee, which, in turn, implies that the program is PAC (ǫ, δ)-
correct. From Lemma 2, we have the following theorem

Theorem 1. Let ǫ and δ be the error and confidence pa-
rameters respectively and Π be the set of feasible paths of
a given CFG G. If our procedure terminates with an approx-
imate finite automaton C, the program is PAC (ǫ, δ)-correct.

Moreover, we obtain the following corollary.

Corollary 2. Suppose our procedure reports a program
P is PAC (ǫ, δ)-correct. If we run the concolic tester with
the same search strategy and batch size used in our procedure
on P , with confidence δ, the concolic tester will find an error
with a probability less than ǫ.

Thanks to the properties of the modified automata learn-
ing algorithm, when decision(Π) is a regular set, our al-
gorithm is guaranteed to terminate and either (1) return
a counterexample c ∈ L(B) ∩ decision(Π) or (2) find an ap-
proximate model of decision(Π) that is disjoint with L(B).

9. HANDLING PROCEDURE CALLS
In this section, we extend our formalism of CFGs to han-

dle programs with multiple procedures. We use a PDA to
represent error decision vectors in this setting. The issue of
using finite automata to represent error decision vectors in
the said setting is that when returning from a procedure call,
a finite automaton cannot remember an unbounded num-
ber of return points (in the case of recursive procedures).
Therefore, an overapproximation, such as a nondeterminis-
tic jump to any possible return point, needs to be used. The
said overapproximation is, however, too imprecise and yields
numerous spurious errors. In contrast, PDAs can represent
the set of error decision vectors precisely.

On the other hand, we still use a finite automaton to repre-
sent the approximation of the set of feasible decision vectors
decision(Π). As a consequence, except that we need to use
PDA operations instead of FA operations and handle proce-
dure calls in the membership queries, all other components
remain unchanged for the setting of multiple procedures.

9.1 Extending CFGs with Procedure Calls
Assume the set of procedure names P . A CFG with calls

(CFGC) is defined as a graph G = (V,E, vi, vr, Ve,XFP)

where V, vi, vr, Ve, and XFP are defined in the same way
as for a CFG, and E ⊆ (V × T [X ,F ] × V ) ∪ (V × (P ×
T [X ,F ] × T [X ,F ]) × V ) is an extended set of edges that
apart from local CFG edges (v, f, v′) for f ∈ T [X ,F ] also
contains procedure call edges e = (v, (p, gin , gout), v

′) for
(p, gin , gout) ∈ P × T [X ,F ]× T [X ,F ] and sequential nodes
v. The gin and gout components of e correspond to for-
mulae for passing actual values to formal parameters of p
(formula gin) and passing the return value of p back to the
caller procedure (formula gout).

In this extension, we define a program as a set of CFGCs
prog = {G1, . . . , Gn} together with a (bijective) mapping
cfgcprog : P → prog that assigns procedure names to CFGCs.
We abuse notation and use prog to denote cfgcprog , i.e.,
prog(p) denotes the CFGC of a procedure p in a program
prog . We assume that all CFGCs in prog have pairwise
disjoint sets of nodes, and further assume an entry point
main ∈ P .

In this paragraph, we give an informal description of how
we extend the definition of a path from a program consisting
of single CFG to a program consisting of a set of CFGCs and
a dedicated entry point. Given a procedure call edge e in
a CFGC G, we call the inlining of e in G the CFGC G′

obtained from G by substituting e with the CFGC of the
called procedure. We use JprogK to denote the set of CFGs
obtained from prog(main) by performing all possible (even
recursively called) sequences of inlinings, and removing any
left procedure call edges from the output CFGCs. A path
in prog is then a sequence π = 〈v0, f1, v1, f2, v2, . . . , fm, vm〉
such that there exists a CFG G′ ∈ JprogK for which it holds
that π ∈ G′.

9.2 Encoding Error Decision Vectors with
Pushdown Automata

In this section, we describe how we construct the PDA
encoding the set of error traces in the considered extension.
The general idea is the same as the one for the use of finite
automata (described in Section 7). The main difference is
that we add jumps between CFGCs (corresponding to pro-
cedure call edges), which use the stack to remember which
state the PDA should return to after the procedure call ter-
minates.

In the following, given a CFGC G = (V,E, vi, vr, Ve,XFP),
we use V (G), E(G), . . . ,XFP(G) to denote the correspond-
ing components of G, and, moreover, we use Vs(G) and
Vb(G) to denote the set of sequential and branching nodes
of G respectively. Consider a program prog = {G1, . . . , Gn}.



We construct the error path automaton as the PDA BP =
({0, 1}, Q,Q, qi,∆, F ) in the following way:

• Q = V (G1) ∪ · · · ∪ V (Gn),

• qi = vi(Gk) such that prog(main) = Gk,

• F = Ve(G1) ∪ · · · ∪ Ve(Gn),

• ∆ = ∆1∪ · · · ∪∆n where every ∆j is defined as follows:

– (v, 0, v′0) ∈ ∆j if v ∈ Vb(Gj)\Ve(Gj), (v, f0, v
′
0) ∈

E(Gj), and v′0 is the 0-successor of v;

– (v, 1, v′1) ∈ ∆j if v ∈ Vb(Gj)\Ve(Gj), (v, f1, v
′
1) ∈

E(Gj), and v′1 is the 1-successor of v;

– (v, λ, v′) ∈ ∆j if v ∈ Vs(Gj) \ Ve(Gj) and
(v, f, v′) ∈ E(Gj);

– (v, 0, v), (v, 1, v) ∈ ∆j if v ∈ Ve(Gj); and

– (v, [λ; λ/v′], vi(Gk)), (vr(Gk), [λ; v
′/λ], v′) ∈ ∆j if

v ∈ Vs(Gj)\Ve(Gj), (v, (p, gin , gout), v
′) ∈ E(Gj),

and Gk = prog(p).

Lemma 4. Let prog be a program, B the set of error paths
of prog, and BP be the error path PDA for prog. Then it
holds that L(BP ) = decision(B).

10. IMPLEMENTATION
We created a prototype tool Pac-Man that implements

the verification procedure described in this paper. The tool
uses several third-party libraries and tools. First, it uses
CIL (C Intermediate Language) [17] to convert the verified
C program to a set of CFGCs, from which we construct
the error trace pushdown automaton BP . Further, we use
the libAMoRE++ library [16, 6] to perform operations of
automata, such as testing their membership and emptiness,
or computing their intersection.

For learning automata, we use the implementation of vari-
ous learning algorithms within the libalf library [6]. Mem-
bership queries are discharged using a concolic tester, men-
tioned as an alternative option in Section 6. Given a decision
vector, our tool uses the CFG of the program to generate
a path corresponding to the decision vector. The path is
passed in the form of a sequence of program statements to
the software model checker CPAchecker [4], which checks
its feasibility. It is possible to switch the model checker with
other checkers, such as CBMC [10].

To deal with equivalence queries, we modified the concolic
tester Crest [7] to generate a batch of k decision vectors, as
described in Section 5. As Crest may fail to generate the
decision vector of a program execution when the execution
terminates abnormally, we modified Crest to take a finite
prefix of the execution in this case. One issue of Crest

that we encountered is that when it processes a condition
composed using Boolean connectives, it expands the condi-
tion into a cascade of if statements corresponding to the
Boolean expression, making the program longer and harder
to learn. We addressed this by modifying Crest so that
it can process conditions with Boolean connectives inside
without expanding them, and in this way we increased the
performance and precision of the analysis.

We also implemented the following three optimizations to
improve the performance of the prototype.

Intersection with Bad Automaton.

Recall that our modified learning algorithm (described in
Section 4.2) first checks whether the intersection of the lan-
guage of the conjecture L(C) and the bad language L(BP )
is empty. Checking emptiness of a PDA is, however, more
difficult than that of a finite automaton. To speed up
the procedure, we build a finite automaton BO that over-
approximates the error language and always first checks
whether L(C) ∩ L(BO) = ∅, which is an emptiness test for
finite automata. We check L(C) ∩ L(BP ) = ∅ only for the
cases that the previous test fails.

Counterexample from the Learning Algorithm.
When an equivalence query returns a counterexample c,

automata learning algorithms usually do not guarantee that
c is not a valid counterexample in the next conjecture au-
tomaton. In our preliminary experiments, we found out that
it happens very often that the mechanical teacher returns
the same counterexample in several consecutive iterations.
Therefore, we decided to check whether c is still a valid
counterexample (by a membership query) for the learning
algorithm before proceeding to the emptiness test. In the
case c is valid, it will be immediately returned to the learn-
ing algorithm to refine the conjecture.

Handling Membership Queries.
The main bottleneck of our approach is the time spent

for membership queries. In our implementation, the soft-
ware model checker CPAchecker is used to check whether
a path is feasible. For each membership query, if we invoke
CPAchecker with a system call, a Java virtual machine
will be created and the components of CPAchecker need
to be loaded, which is very time consuming. To make mem-
bership queries more efficient, we modified CPAchecker to
run in a server mode so that it can check more than a single
path without being re-invoked.

11. EXPERIMENTS
This section presents our experimental results to justify

the claims made in this paper. We evaluated the perfor-
mance of our prototype using the recursive category of SV-
COMP 2015 [1] as the benchmark. The recursive category
consists of 24 non-trivial examples such as Ackermann, Mc-
Carthy 91, and Euclidean algorithms. Among eight par-
ticipating tools, only two can solve 20 or more examples
correctly. Among the 24 examples, 8 of them contain an
error. We performed our experiments with the error param-
eter ǫ = 0.1, confidence δ = 0.9, and size of batched samples
k = 10. We ran our prototype on each example three times
in all experiments. The provided statistical data were calcu-
lated based on the average of the three runs unless explicitly
stated otherwise. We set the timeout to 900 s to match the
rules of SV-COMP 2015.

11.1 Comparison of Learning Algorithms
We evaluated our approach with different automata learn-

ing algorithms implemented within the libalf library.
There are five active online automata learning algorithms
implemented in libalf: Angluin’s L∗ [2], L∗-columns,
Kearns/Vazirani (KV) [14], Rivest/Schapire (RS) [18], and
NL∗ [5]. Among the search strategies provided by Crest,
we chose the random branch strategy. The experimental
results are in Table 1.



Table 1: Comparison of learning algorithms

Algorithms
KV L∗ L∗-col. RS NL∗

Verified 15 9.67 10 11.33 8.33
Bug found 6 6.33 6 6.33 6
by Bad 4 4.67 4 3 4.33
by Crest 2 1.67 2 3.33 1.67

False positives 0 0 1 0.33 1
False negatives 2 1.67 1.33 1.67 1
Timeouts 1 6.33 5.67 4.33 7.67
# of Mem queries 2896 8898 10071 15377 14463
# of Equ queries 548 78 77 367 67
Total time [s] 2406 6668 6565 5786 7972
Mem queries time 30% 59% 58% 63% 70%

Table 2: Comparison of search strategies of Crest

Search Strategy
RBS CDS

Verified 15 15
Bug found 6 6
False positives 0 0
False negatives 2 2
Timeouts 1 1
# of Mem queries 2896 2362
# of Equ queries 548 463
Total time [s] 2406 2013
Time for one sample [s] 0.75 0.82

The results show that KV is the algorithm with the best
performance—it solved 21 out of the 24 examples. Our tech-
nique solves more than any participant in the recursive cat-
egory of SV-COMP 2015 but the winner. The main reason
for the performance difference is that KV uses a tree-based
data structure to store query results. Compared to other
learning algorithms that use table-based structures, KV re-
quires much less number of membership queries to maintain
the consistency of the tree-based structure. For all learn-
ing algorithms except RS, the number of error paths found
by the emptiness test of the intersection of the conjecture
and the bad automaton is more than that found by Crest.
In our experiments, the time spent for membership queries
is usually the performance bottleneck. Table 1 shows that
membership queries took 30% of the total execution time
for KV and at least 58% for other algorithms.

11.2 Comparison of Search Strategies
We also evaluated the performance of our algorithm

against different Crest search strategies. According to [7],
the most efficient ones are random branch strategy (RBS
for short) and control-flow directed strategy (CDS for short).
Therefore, we tested the performance of our prototype using
these two strategies. We selected KV as the learning algo-
rithm in this experiment. The results are shown in Table 2.

Table 2 shows that although the average time for taking
one sample with CDS is more than with RBS, the total time
is less. The main reason is that CDS explores untouched
branching points more aggressively than RBS but requires
more overhead. Our experiments conform the results in [7].

11.3 Evaluation of CREST with Restarts
To justify our modification to the PAC (ǫ, δ)-correctness

guarantee given in Section 5.2, we show in the experiment
below that running Crest in batches does not decrease its
bug-hunting capabilities. We compared the performance of

Table 3: Evaluation of Crest with and without restart. For
each example, the number of batches and the number of it-
erations used to find bugs are obtained respectively from
the worst run in scenario (1) and from the best run in sce-
nario (2).

Settings
Examples Batch Size 10 Never Restart
Ackermann02 batch 3 iteration 14
Addition02 batch 1 iteration 2
Addition03 Timeout Timeout
BallRajamani-SPIN2000 batch 1 iteration 1
EvenOdd03 batch 1 iteration 2
Fibonacci04 batch 4 iteration 2
Fibonacci05 Timeout Timeout
McCarthy91 batch 1 iteration 2

Table 4: Comparison of Crest search strategies in terms of
the quality of the learned automata. The total number of
tested batches is 1500.

Equ query strategy
RBS CDS

Evaluation Accepted 1487 1473
(RBS) Ratio 99.13% 98.2%

Evaluation Accepted 1489 1500
(CDS) Ratio 99.27% 100%

Crest with two different scenarios: (1) restart after each 10
decision vectors and (2) never restart. We performed the ex-
periment on the 8 buggy examples in the recursive category
and calculated in how many examples Crest found a bug
for within the timeout period. In Table 3, we chose RBS as
the search strategy. We also tried the experiments with the
CFG strategy and got a similar result. We list the worst
result for scenario (1) and the best result for scenario (2)
that we received in our three runs. We found out that the
worst runs in scenario (1) can still find with a little overhead
all bugs found by the best runs in scenario (2).

11.4 Evaluating Quality of Learned Automata
Besides the performance in terms of the running time, we

also compared the quality of the learned automata produced
by our prototype using the two strategies for the 15 success-
fully verified bug-free examples. To evaluate the quality of
the learned automata, for each example, we ran Crest with
the given search strategy to get 100 batched samples and
tested how many of the them are all accepted by the learned
automaton. The average values of the runs are shown in
Table 4 where evaluation strategies are strategies used to
generate the testing batched samples. The table shows that
the quality of the automata learned with the two strategies
is almost the same. Also, observe that the guarantee of our
procedure is that the sample coverage is higher than 90%.
Our experimental results show that the quality of the au-
tomata produced by our procedure matches the theoretical
expectations.

Finally, we tested how many words generated by Crest

are not covered in the automata learned with the KV algo-
rithm and RBS. Again, we ran Crest with RBS in two
scenarios: (1) restart after each 10 decision vectors and
(2) never restart. For each learned automaton (there were
15) and each scenario, we generated 1000 decision vectors



and checked how many of them are accepted by the automa-
ton. In total, for scenario (1), we observed 1487 accepted
batches of size 10 (for the total of 15 000 tested vectors),
yielding the correctness 99.13%. For scenario (2), we ob-
served 14 977 accepted vectors, for the correctness 99.86%.
We notice that no matter which strategy we use, the learned
automaton accepts over 99% of the decision vectors pro-
duced by Crest.

12. DISCUSSION
There are several advantages of having a program model

with statistical guarantees. For instance, the model can be
reused for verifying a different set of properties of the pro-
gram. Assume that the new property to be verified is de-
scribed as an error path automaton B′ and C is the learned
automaton. If L(B′) ∩ L(C) = ∅, we verified the program
with the new property and the same PAC (ǫ, δ)-correctness
guarantee. For the case that there exists a decision vector
w ∈ L(B′) ∩ L(C), we test whether w is feasible and either
report that w is a feasible error decision vector w.r.t. B′ or
continue the learning algorithm with w as a counterexample
for refining the next conjecture.

In this paper we focus on checking validity of program
assertions. The verification step is handled by making an
intersection of the conjecture automaton C and the error
path automaton B and testing its emptiness. This proce-
dure can be generalized to more sophisticated safety prop-
erties by replacing the tests L(C)∩ L(B) = ∅ and s ∈ L(B)
with other tests. For example, we can check the property
“the program contains at most 10 consecutive 1-decisions on
any path” with a statistical guarantee of the correctness of
the received answer. By extending the alphabet {0, 1} with
program labels, one can also check temporal properties re-
lated to those labels, e.g., “label A should be reached within
10 decisions after label B is reached.”

One possible extension of our work is to learn sequences of
feasible function calls instead of decision vectors. This might
lead to a more compact model in contrast to the current ap-
proach. However, in this case the alphabet of the model to
be learned will be all function names in the program, which
is usually much larger than 2, the size of the alphabet in our
work. Moreover, in this setting, it is much harder to answer
membership queries; a program path composed of function
calls might perform a complex traversal through loops and
branches in between the calls, making the problem of check-
ing feasibility of a program path already undecidable.

One benefit of our approach is that, in principle, it can be
extended to black box system verification and model syn-
thesis. By observing the behavior of the environment, we
may find some pattern (e.g., some statistical distribution)
of the inputs and then, based on that, design a sampling
mechanism. Under the assumption that the behavior of the
environment remains unchanged, we can verify or synthesize
the model of the system w.r.t. the given sample distribution.

13. RELATED WORKS
Exact automata learning algorithm was first proposed by

Angluin [2] and later improved by many people [2, 18, 14, 5].
The concept of probably approximately correct (PAC) learn-
ing was first proposed by Valiant in his seminal work [21].
The idea of turning an exact learning algorithm to a PAC
learning algorithm can be found in Section 1.2 of [3].

Applying PAC learning to testing has been considered be-
fore [22, 13]. The work in [13] considers a program that
manipulates graphs and check if the output graph of the
program has properties such as being bipartite, k-colorable,
etc. Our work considers assertion checking, which is more
general than the specialized properties. The work [22] con-
siders more theoretical aspects of the problem. The author
estimates the maximal number of queries required to infer
a model of a black box machine. The context is quite differ-
ent, e.g., the work does not discuss how to sample according
to some distribution efficiently to produce the desired guar-
antee (bounded path coverage) as we do in this paper.

The L∗ algorithm has been used to infer the model of error
traces of a program. In [8], instead of decision vectors, the
authors try to learn the sequences of function calls leading
to an error. Their teacher is implemented using a bounded
model checker and hence can only guarantee correctness up
to a given bound. The authors do not make use of the PAC
learning technique as we did in this work.

Both our approach and statistical model checking [20, 15,
23] provide statistical guarantees. As mentioned in the in-
troduction, statistical model checking assumes a given model
while our technique generates models of programs with sta-
tistical guarantee. Those models can be analyzed using var-
ious techniques and reused for verifying different properties.

APPENDIX

A. AN INLINING IN A CFGC
Consider a procedure call edge e = (v, (p, gin , gout), v

′) of
Gj = (Vj , Ej , vij , vrj , Vej ,XFP j) for 1 ≤ j ≤ n. Further
assume that prog(p) = Gk = (Vk, Ek, vik, vrk, Vek,XFPk)
for 1 ≤ k ≤ n. The inlining of e in prog is the pro-
gram prog# = {G1, . . . , Gj−1, G

#

j , Gj+1, . . . , Gn} such that

G#
j = (Vj ∪ V #

k , E#, vij , vrj , Vej ∪ V #

ek ,XFP j) where V #

k is

a set of fresh nodes (i.e., V #

k is disjoint from the set of

nodes of any CFGC in prog) and V #

ek ⊆ V #

k . Moreover,

there exist bijections σ : V #

k → Vk and σe : V #

ek → Vek

such that σe ⊆ σ. The set of edges E# is defined as
E# = (Ej \ {e}) ∪ E#

k ∪ {(v, gin , v
#

ik), (v
#

rk, gout , v
′)} where

E#

k = {(v#k , f, v#′
k ) | (σ(v#k ), f, σ(v#′

k )) ∈ Ek}.
Let inln(prog) be the smallest (potentially infinite) set

that contains prog and is closed w.r.t. inlinings in main, i.e.,
if inln(prog) contains a program prog# with a procedure call
edge e in the CFGC prog#(main), it also contains the inlin-
ing of e in prog#. We abuse notation and use σ uniformly to
denote for all programs prog# ∈ inln(prog) the mapping of
the nodes of the CFGCs in prog# to their original nodes in
prog (for nodes V of prog , we assume that σ|V = id, i.e., that
the restriction of σ to V is the identity relation). We denote
as JprogK the set of CFGs (without procedure call edges)
obtained by starting from the set inln(prog), collecting the
CFGCs of main functions of all inlinings of prog into the
set M = {prog#(main) | prog# ∈ inln(prog)}, and, finally,
transforming the CFGCs of M into CFGs of JprogK by sub-

stituting each procedure call edge (v#, (p#, g#in , g
#
out), v

#′)
with the edge (v#, ff, v#′).

We extend the definition of a path as follows: A path in
prog is a sequence π = 〈v0, f1, v1, f2, v2, . . . , fm, vm〉 such
that there exists a CFG G′ ∈ JprogK and a CFG path π′ =
〈v′0, f1, v

′
1, f2, v

′
2, . . . , fm, v′m〉 in G′ such that ∀0 ≤ j ≤ m :

vj = σ(v′j).
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