
Optimal Sanitization Synthesis for Web Application
Vulnerability Repair

ABSTRACT
We present a code- and input-sensitive sanitization syn-

thesis approach for repairing string vulnerabilities that are
common in web applications. The synthesized sanitization
patch modifies the user input in an optimal way while guar-
anteeing that the repaired web application is not vulnera-
ble. Given a web application, an input pattern and an at-
tack pattern, we use automata-based static string analysis
techniques to compute a sanitization signature that charac-
terizes safe input values that obey the given input pattern
and are safe with respect to the given attack pattern. Using
the sanitization signature, we synthesize an optimal saniti-
zation patch that converts malicious user inputs to benign
ones with minimal editing. When the generated patch is
added to the web application, it is guaranteed that the re-
paired web application is no longer vulnerable. We present
two refinements to the basic sanitization synthesis algorithm
that reduce the runtime sanitization cost significantly. We
evaluate our approach on open source web applications us-
ing common input and attack patterns, demonstrating the
effectiveness of our approach.

Keywords
Sanitization Synthesis, String Analysis, Automata

1. INTRODUCTION
Vulnerabilities that are due to errors in input validation

and sanitization code (such as Injection Flaws and Cross-
Site Scripting) have continued to be the topmost security
risks in web applications in the past decade [23]. Input val-
idation and sanitization code has to make sure that 1) the
input string is in the required format, and 2) the strings
that reach security sensitive functions (called sinks) are not
malicious. Security experts specify malicious strings as at-
tack patterns, which are regular expressions that characterize
possible attacks. Similarly, application programmers specify
input formats using regular expressions, which we call input
patterns. Simply enforcing the intersection of these patterns
on the input does not work since the attack patterns charac-
terize the attack strings at sinks, i.e., at the point where the
string value reaches a security sensitive function. Enforcing
the input patterns at the sinks does not work either, since
the application code can change the application state based
on the input string before it reaches a sink, and modifying
or rejecting the input at the sink may cause the application
to enter in an inconsistent state.

Given the prevalence of erroneous input validation and
sanitization in web applications, it would be valuable to have
an approach that automatically generates provably correct
sanitizers. In order to automatically generate a sanitizer, the
proposed analysis must be code-sensitive, i.e., it has to take
into account how the application code manipulates the input
value before it reaches a sink. For example, by re-inserting a

character that is deleted during sanitization, an application
may reconstruct an attack before the input reaches the sink.
In fact, an exploit that utilizes the string manipulation op-
erations in the application code may be able to construct an
attack string from an input that does not contain an attack
string.

Moreover, an effective sanitizer should prevent attacks
while minimizing its effect on users who are not malicious.
Hence, sanitizers should be input-sensitive and modify each
input in a minimal way while still guaranteeing security.
Consider a post in a forum:

To write an XSS attack such as <script>alert(2)
</script> in Stack Overflow, use a built-in escaping
mechanism like <c:out> or <h:outputText> to display
your comments.

This post is considered harmful with respect to a XSS vul-
nerability due to the script statement. It could be converted
to a benign string with one simple editing, e.g., to escape
only the < character in <script>. This requires sanitiza-
tion functions to be input-sensitive, being able to identify
and modify only malicious parts in the input (with respect
to the attack pattern) while keeping the rest unmodified.

In this paper, we present a novel sanitization synthesis ap-
proach that is both code and input-sensitive. The sanitizers
generated by our approach modify the input in a minimal
way and guarantee that 1) the modified input obeys the in-
put pattern, and 2) no string that matches an attack pattern
reaches a sink. As shown in Figure 1, our approach consists
of two main phases:

Phase 1: Sanitization Signature Generation: Given
a web application, an input pattern and an attack pat-
tern (both specified as regular expressions) we first extract
dependency graphs for security sensitive functions (sinks)
from the web application using static program analysis tech-
niques, where each extracted dependency graph shows how
the input values flow to a sink, including all the string oper-
ations performed on the input values before they reach the
sink. We use automata-based symbolic string analysis tech-
niques [37] where the values that string expressions can take
during program execution are represented using determinis-
tic finite automata (DFA). We first conduct a forward sym-
bolic reachability analysis on the dependency graph start-
ing from user inputs (which can be any string value). The
forward symbolic reachability analysis computes an over-
approximation of all possible string values that can reach
the sink and generates a DFA that accepts this set of strings.
Intersecting (using automata product) the language of the
DFA generated for the sink with the DFA constructed from
the attack pattern allows us to determine all possible attack
strings with respect to the given attack pattern (which could
be empty, meaning that application is not vulnerable). Com-
pared to vulnerability detection techniques that are based
on taint analysis [14, 15], the automata-based string anal-
ysis takes semantics of string manipulation operations into
account, and is able to detect vulnerabilities due to inade-
quate implementation or use of sanitization functions that

taint analysis would overlook.
In order to generate sanitizer that removes any identi-

fied vulnerability, we need to identify the string values at
the input that can be malicious. To do so, we conduct a
backward symbolic reachability analysis on the dependency
graph starting from the sink and the DFA that accepts the
attack strings at that sink. Propagating attack strings back
to the input node in the dependency graph results in a
DFA that characterizes an over approximation of all mali-
cious user inputs, and we call this the vulnerability signature.
Since vulnerability signature over approximates all malicious
user inputs, its complement (i.e., the set of all strings that
are not in the vulnerability signature) corresponds to all
strings that are safe with respect to the given attack pat-
tern. By taking the intersection of this complement set with
the set of strings that match the input pattern, we obtain
the sanitization signature, i.e., the set of input strings that
match the input pattern, and that are guaranteed not to
cause any attack strings at the sink. We compute the DFA
for the sanitization signature using the automata comple-
ment and automata product operations.

Phase 2: Optimal Sanitization Synthesis: In the sec-
ond phase, we synthesize optimal sanitizers for repairing the
vulnerable web application based on the sanitization signa-
tures computed in the first phase. The generated sanitizers
are optimal in the sense that they modify the input string
in a minimal way. When the synthesized sanitizer is used as
a patch to repair the web application (by inserting it to the
first program location where the input value is read), the
resulting repaired web application is guaranteed to be safe
with respect to the given attack pattern.

Given an input string, if the input string is in the saniti-
zation signature, the synthesized sanitizer does not modify
the input. If the input string is not in the sanitization signa-
ture (which means that it is in the vulnerability signature,
hence, it is potentially malicious), the synthesized sanitizer
modifies the input to covert it to a benign one (i.e., to a
value that is in the sanitization signature).

The synthesized sanitizer is optimal in the sense that the
input is modified in a minimal way, where the amount of
modification is formalized using the notion of edit-distance.
The edit-distance between two strings is the smallest num-
ber of operations required to transform one string into the
other. Edit-distance is typically used as a similarity mea-
sure between two strings; the shorter distance implies that
the two strings are more similar. The sanitizers we generate
convert a given malicious input to a corresponding benign
input with minimal edit-distance. Unlike sanitization ap-
proaches that remove all suspicious characters from all in-
put strings [36], the approach we present in this paper is
input-sensitive and modifies each input in a minimal way.

In practice, the application developers may want to reject
an input string instead of repairing it if the edit distance is
too large. This can be easily accommodated in our approach
by rejecting an input string if the minimal edit distance is
higher than a threshold value determined by the developer.
Note that setting the threshold value to zero would convert
the generated sanitizer to a validator which rejects the input
if it does not match the sanitization signature. Using such a
threshold the application developers can control how much
modification on the input is allowed by the sanitizer.

Let DFA A denote the sanitization signature automaton
and L(A) denote the language (i.e., the set of strings) ac-

Sanitization
Signature
Generation

Web
Application
Code

Sanitization
Signature
Automaton

Input
Pattern

Attack
Pattern

Sanitizer
Function

Input
String

Sanitized
Input
String

M
in

im
um

 E
di

t
D

is
ta

nc
e

In
cr

em
en

ta
l

C
om

pu
ta

tio
n

P
re

-
C

om
pu

ta
tio

n

Fo
rw

ar
d

A
na

ly
si

s
B

ac
kw

ar
d

A
na

ly
si

s
P

at
te

rn

C
om

po
si

tio
n

Sanitizer
Generation

Figure 1: High level overview of the presented approach.

cepted by A. Let string w be the input. The sanitizer we
generate based on A works as follows: Given w, it outputs a
string w′ in L(A), such that the edit-distance between w and
w′ is minimal (if w is in L(A) then minimal edit distance
is 0 and w′ = w). We implemented three algorithms for
sanitization synthesis. First one is based on the basic min-
imal edit-distance computation algorithm presented in [31,
16]. However, this algorithm has a high runtime cost and
would not be feasible for sanitization in web applications.
Second algorithm we implement is an improved version that
computes the result in an incremental manner in order to
reduce the runtime cost [2]. Third algorithm we implement
is a new algorithm that we propose in this paper that pre-
computes information needed for the incremental algorithm
and reduces the runtime overhead further. Let |S| be the size
of alphabet and |Q| be the number of states in the sanitiza-
tion signature. The amount of data store is only 2x|S|x|Q|
in the worst case during the pre-computation of sanitiza-
tion records. We show that our pre-computation algorithm
reduces the runtime overhead significantly compared to pre-
vious two algorithms.

We implemented all the techniques mentioned above for
PHP programs on top of the string analysis tool called
Stranger (STRing AutomatoN GEneratoR) [35] and incor-
porated our automated sanitization synthesis algorithms in
an online service called Patcher for repairing vulnerable web
applications [39]. Given a web application and a set of at-
tack patterns, Patcher generates a PHP file that contains
the synthesized sanitization functions and signatures for all
the identified vulnerabilities. By simply including this file
and inserting patch statements in the code, the developers
can repair the vulnerable web application, and eliminate the
identified vulnerabilities.

Our automated repair strategy produces sound repairs
with a precise criteria (minimum edit distance) on how the
input is modified. Our approach is different than source
code repair techniques that make syntactic modifications to
source code [14], and must be evaluated by the developers
in order to check if the modifications to the source code are
acceptable. Our repair approach works more like a compiler,
and generates code based on a well defined objective with
guaranteed semantics. As manual evaluation of the auto-
matically generated machine code by a compiler is unnec-
essary, manual evaluation of the automatically synthesized
patches that our approach produces is also unnecessary. The
question that developers can evaluate is the following: Is the
minimum-edit distance a useful metric for sanitization? Al-
though we did not conduct an empirical study on developers
to address this particular question, our extended experience

in analyzing a large number of sanitization code indicates
that, modifying the input in a minimal way is a key cri-
terion in sanitization, and minimum-edit-distance captures
this criterion precisely. Note that, it is easy to extend our
approach by assigning weights to characters so that in cal-
culating minimum edit distance some characters are less or
more likely to be removed. The assignment of these weights
is likely to be application specific, so, in the general approach
we present in this paper we do not use a weighted approach.

Our main contributions in this paper can be summarized
as follows: 1) We introduce the concept of sanitization sig-
nature and show how it can be automatically computed in
a code-sensitive manner using both input and attack pat-
terns. 2) We combine automata-based string analysis tech-
niques with minimal edit distance algorithms and present a
novel automated sanitization synthesis technique that gen-
erates input-sensitive sanitizers that modify the input in a
minimal way. 3) We propose two efficient algorithms for the
editing distance problem with respect to a target automaton
(sanitization signature) and show that it can be applied for
patching vulnerable user inputs. The first version improves
the direct composition algorithm in terms of space and is
expected to be also faster for longer input strings. Since
run time is crucial in the application, we propose a second
version that pre-computes the editing graph for each alpha-
bet symbol and use it to achieve a dramatic speed-up. The
cost of the pre-computation is actually low, linear to the size
of different alphabet symbols used in the target automaton.
The algorithms are interesting on their own right and should
be applicable in many different applications.

2. SANITIZATION SIGNATURE
GENERATION

In order to generate sanitization signatures, we first ex-
tract a dependency graph from the input web application us-
ing existing static analysis techniques [15]. The dependency
graph shows how input values flow to sinks. Each edge of
the dependency graph is labeled with a string manipulation
operation denoting how the string values are modified.

Let us define the set of string Operations P using an ab-
stract grammar as follows:

R ::= ∅ | a | RR | R+R | R | R∗

S ::= s1 | s2 | s3 | · · ·
P ::= input | R | S + S | SS | S[S 7→ S]

where s1, s2, . . . denote string expressions and a ∈ Σ is an
input symbol. Observe that R is the class of regular expres-
sions. A string operation is either a regular expression, the
union (S + S) or concatenation (SS) of string expressions,
or the replacement (S[S 7→ S]) of string expressions.

A dependency graph is a directed graph G = 〈V, E, cmd〉
with a vertex labeling function cmd : V → P . An edge
(v, v′) ∈ E means that the operation associated with v′ de-
pends on the operation associated with v. Each vertex of
the dependency graph represents a string expression (that is
constructed by a string operation that may use other string
expressions, i.e., other vertices in the dependency graph).
An input operation input obtains a string from an external
source such as a text field in a web page. A vertex associated
with a regular expression specifies string constants. Subse-
quently, a vertex labeled by an input operation or a regular
expression has no predecessors (since they do not depend

on any other string expressions). In addition to inputs and
regular expressions, union, concatenation, and replacement
operations can be specified in a vertex of the dependency
graph. The final vertex in a dependency graph (i.e., the
vertex with no successors) denotes a sink, i.e., a security
sensitive function that can be target of an attack, such as
execution of an SQL command stored in a string variable.

Let Lattack be a regular language of attack strings (speci-
fied by the attack pattern) and Linput be a regular language
of input strings that obey the input format (specified by the
input pattern). For each vertex associated with an input
operation, we would like to compute the sanitization signa-
ture, i.e., a regular language such that, when the input value
is in that language it is guaranteed that: 1) the input value
is in Linput , and 2) the sink does not receive a string value
that is in Lattack .

We compute the sanitization signature using symbolic for-
ward and backward reachability analyses that annotate each
vertex of the dependency graph with a deterministic finite
automaton (DFA). The DFA annotating a vertex in the de-
pendency graph characterizes the set of string values that
the string expression corresponding to that vertex can take
during program execution.

In implementing the symbolic forward and backward reach-
ability analysis, we use the automata based pre- and post-
image computations for string operations implemented in
the Stranger tool [34, 35, 37] and an automata based widen-
ing operation that guarantees convergence [4, 37].

Let G = 〈V,E, cmd〉 be a dependency graph. During
forward analysis we construct a deterministic finite automa-
ton for each vertex v ∈ V based on the operation cmd(v)
associated with v and the DFAs that annotate the prede-
cessors of v. Hence, each step of the forward analysis cor-
responds to a post-image computation for a string opera-
tion. When cmd(v) = input, we would like to represent
an arbitrary input. Hence we construct a DFA accepting
an arbitrary string in Σ∗. Similarly, when cmd(v) = R for
some regular expression R, we construct a DFA accepting
the regular language specified by the expression R. When
cmd(v) = sl + sr where sl, sr ∈ S denote two predeces-
sors of the vertex v, we construct a DFA accepting the
union of strings from the two predecessors. Let Ml and
Mr be the DFAs of the predecessors sl and sr respectively.
Then, the DFA M of v accepts the union of the languages
of Ml and Mr. That is, L(M) = L(Ml) ∪ L(Mr). When
cmd(v) = slsr, we construct a DFA accepting strings from
the predecessor sl followed by those from the predecessor
sr. The DFA M of v subsequently accepts the concate-
nation of the languages of Ml and Mr. I.e., M has the
property that L(M) = {uw : u ∈ L(Ml), w ∈ L(Mr)}. Fi-
nally, when cmd(v) = so[sf 7→ st], we construct a DFA
accepting any pattern from so whose substrings from sf
are replaced by strings from st. Let Mo,Mf ,Mt be deter-
ministic finite automata of the predecessors so, sf , and st
respectively. The DFA M of v accepts the following lan-
guage {w : k > 0, w1x1w2x2 · · ·wkxkwk+1 ∈ L(Mo), w =
w1y1w2y2 · · ·wkykwk+1, xi ∈ L(Mf), yi ∈ L(Mt) for all 1 ≤
i ≤ k, and wj 6∈ {ux′v : x′ ∈ L(Mf), u, v ∈ Σ∗} for all 1 ≤
j ≤ k + 1}.

If the dependency graph contains cycles (i.e., if the string
manipulating code in the web application contains loops or
recursion), then just propagating the values along the edges
of the dependency graph is not sufficient. In that case, it

is easy to convert the above computation to a least fixpoint
computation by initially annotating each intermediate ver-
tex of the dependency graph with a DFA that does not ac-
cept any string value, and iteratively updating the DFAs
according to the above rules. However, since the lattice de-
fined by sets of strings contains infinite chains, this fixpoint
computation is not guaranteed to converge. In order to guar-
antee convergence we use an automata widening operation
for the vertices in the dependency graph that are part of a
cycle [4, 37]. Widening operation guarantees that the fix-
point computation converges in the presence of cycles, and
the result is an over-approximation of the least fixpoint.

After the DFA Ms for the sink s ∈ V is obtained, Ms ac-
cepts (an over approximation) of all string values that can
reach the sink assuming that input vertices can take arbi-
trary string values. L(Ms) ∩ Lattack is the language of all
malicious attacks that can reach the sink node. Let Ss ac-
cept this language. We would like to identify safe input
strings which do not yield any attack at the sink. To this
end, we construct a DFA Sinput via backward reachabil-
ity analysis along the reverse path from the sink to the in-
put node. Each step of the backward analysis corresponds
to a pre-image computation for a string operation. When
cmd(v) = slsr, we would like to construct a DFA accept-
ing strings for the predecessor sl or the predecessor sr. For
instance, given the DFA M of v and Mr, we compute Sl

so that M accepts the concatenation of the languages of
Sl and Mr. Precisely, Sl has the property that L(Sl) =
{u : uw ∈ L(M), w ∈ L(Mr)}. We can compute Sr in a
similar way. When cmd(v) = so[sf 7→ st], we construct a
DFA So for the predecessor so so that given M accepts any
string from L(So) whose substrings from sf are replaced
by strings from st. Let M,Mf ,Mt be DFAs for v, the
predecessors sf , and st respectively. The DFA So of the
predecessor so can be computed as an over-approximation
by constructing the DFA that accepts the following lan-
guage {w : k > 0, w1x1w2x2 · · ·wkxkwk+1 ∈ L(M), w =
w1y1w2y2 · · ·wkykwk+1, xi ∈ L(Mt), yi ∈ L(Mf) ∪ L(Mt)
for all 1 ≤ i ≤ k, and wj 6∈ {ux′v : x′ ∈ L(Mt), u, v ∈

Σ∗} for all 1 ≤ j ≤ k + 1}.
As with the forward analysis, during backward analysis

we use the automata widening operation to guarantee con-
vergence in the presence of cycles in the dependency graph.

When the backward analysis reaches the input node, the
computed DFA for the input node, denoted as Sinput accepts
an over approximation of all malicious input strings. These
are all input strings that can cause an exploit for the given
attack pattern. The sanitization signature that character-
izes safe input strings (which obey the input format, and
are guaranteed to not yield any attack at the sink with re-
spect to the given attack pattern) is defined as the DFA that
accepts the intersection of the language Linput (the strings
that obey the input format) and the language Σ∗ \L(Sinput)
(the strings that are guaranteed to not cause an attack). We
compute the sanitization signature automaton that accepts
the language Linput ∩ (Σ∗ \L(Sinput)) using automata com-
plement and automata product operations.

3. OPTIMAL SANITIZATION SYNTHESIS
In this section, we present algorithms that find optimal

corrections for malicious (or not in the format) inputs. After
the correction, the modified input will be in the sanitization
signature. To be more specific, given a DFA A that repre-

sents the sanitization signature (computed as described in
the previous section) and a string w that represents the in-
put, the algorithms presented in this section find a string w′

in L(A) with the minimal edit-distance to w. Formally, the
goal is to find w′ ∈ L(A) such that dist(w,w′) ≤ dist(w,w′′)
for all w′′ ∈ L(A) where dist(w,w′) denotes the edit distance
between two strings which we define below.

A symbol operation on a string is deleting a symbol, in-
serting a symbol, or substituting a symbol in the string. Let
u,w ∈ Σ∗. One can transform u to w by a sequence of
symbol operations. The distance between u and w (written
dist(u,w)) is the least number of symbol operations trans-
forming u to w. Clearly, dist(u, u) = 0 and dist(u,w) ≥ 0.
Moreover, one can show that dist(u,w) = dist(w, u) and
dist(u, v) + dist(v, w) ≥ dist(u,w) for every u, v, w ∈ Σ∗.

Below we present our sanitization synthesis approach in
three parts. The first part presents the basic sanitization al-
gorithm that converts an input string to another string that
is in the sanitization signature with minimal edits. The next
part describes an improved version of the sanitization algo-
rithm that computes the result in an incremental manner.
Responsiveness of web-applications is an important concern,
so our goal is to keep the runtime overhead of sanitization
as small as possible. In the last part, we describe a new
algorithm that pre-computes information needed for the in-
cremental algorithm. This revised algorithm further reduces
the runtime computation time needed for each input.

3.1 Optimal Sanitization
We begin with the example in Figure 2 where the input

string ba is encoded in the DFA in (a) and the sanitization
signature a+ is encoded by the DFA in (b). We assume in
the example the set of alphabet symbols is Σ = {a, b}. In
order to find the optimal sanitization, we build the labeled
graph in (c) from the two automata. We call such a graph
an edit-distance graph.

The nodes in the graph come from the states of the two
automata. For example, the initial node (0, a) comes from
the two initial states 0 and a; the final node (2, b) comes from
the two final states 2 and b. There are three outgoing edges
from the node (0, a). Each of them models a different edit
operation. The edge that goes to the node (0, b) is labeled
by (λ, a), 1, which means that it consumes nothing from the
input (the λ symbol) and turns it to a. Hence this models
an insert operation. Moreover, the cost of using this edge
is one. In such a case, the state of the input DFA stays the
same and the sanitization signature DFA moves to the state
b. The edge that goes to the node (1, a) models a delete
operation. The input DFA moves to the state 1 while the
state of the sanitization signature DFA stays the same. The
edge to (1, b) models the substitute operation.

From the node (1, b) to the node (2, b), there is an edge
labeled (a, a), 0, which means that the symbol of the input
matches the sanitization signature and hence no modifica-
tion is needed. In such a case, the cost is zero. For finding
an optimal patch, we need to find a path in the edit-distance
graph from the initial node to the final node, with the low-
est cost. This can be done by applying the standard single-
source shortest path algorithm. In this example, we obtain

the following shortest path (0, a)
(b,a),1−−−−→ (1, b)

(a,a),0−−−−→ (2, b).
From the edge labels of the path, we find that the input
ba will be modified to aa and the total cost is one, which
equals dist(ba, aa). We will formalize this sanitization pro-

cedure below.

0 1 2
b a

(a) Input

a b
a

a

(b) Sanitization Signature

0, b 1, b 2, b

0, a 1, a 2, a

(
λ
,
a
)
,
1

(b, a), 1
(b, λ), 1

(a, a), 0
(a, λ), 1

(λ, a), 1 (λ, a), 1

(b
, a

),
1

(a
, a

),
0

(
λ
,
a
)
,
1

(
λ
,
a
)
,
1

(b, λ), 1 (a, λ), 1

(λ, a), 1

(c) Edit-Distance Graph

Figure 2: Computing Optimal Sanitization

Let A = 〈Q,Σ, δ, q0, F 〉 be a DFA of the sanitization sig-
nature produced by the procedure in Section 2. We create a
DFA X = 〈P,Σ, δP , p0, FP 〉 for the input string w such that
L(X) = {w}.

We create the edit-distance graph 〈V,E〉 for the DFA A
and the DFA X as follows. The set of nodes V = P ×Q. A

labeled edge (p, q)
(ap,aq),c−−−−−−→ (p′, q′) ∈ E if and only if one of

the following conditions holds:

• Insert: The state of the input DFA remains unchanged
and the DFA of the sanitization signature A fires a
transition. The cost of this operation is one. Formally,
p = p′, ap = λ, δ(q, aq) = q′, and c = 1.

• Delete: The input DFA X fires a transition. The
state of the sanitization signature DFA A remains un-
changed. The cost of this operation is one. Formally,
δP (p, ap) = p′, q = q′, aq = λ, and c = 1.

• Substitute: Both the input DFA X and the DFA A
fire transitions. The symbol of the transition fired by
A does not match the symbol of the transition fired
by X. The cost of this operation is one. Formally,
δ(q, aq) = q′, δP (p, ap) = p′, aq 6= ap, and c = 1.

• Match: Both the input DFA X and the DFA A fire
transitions. The symbol of transition fired byAmatches
the symbol of the transition fired by X. The cost of
this operation is zero, because no modification to the
input string has been made. Formally, δ(q, aq) = q′,
δP (p, ap) = p′, aq = ap, and c = 0.

After constructing the edit-distance graph using the above
construction, we compute the path with minimal cost from
the initial node (p0, q0) to some final node (pf , qf) with pf ∈
FP and qf ∈ F . Such minimal cost path can be found
by first applying Dijkstra’s shortest path algorithm to find
a minimal cost path represented by a sequence of symbols
((a0, a0

′), c0), ((a1, a1
′), c1), . . . , ((am, am

′), cm). We obtain
the sanitized input by removing all padding symbols λ from
the string a0

′a1
′ . . . am

′ and the cost of sanitization is given
as c0 + c1 + . . .+ cm.

Theorem 1 (Correctness). Let A be the DFA of the
sanitization signature, w be the input string, and w′ be the
sanitized string produced by the above procedure. Then
dist(w,w′) ≤ dist(w,w′′) for all strings w′′ ∈ L(A).

The edit-distance graph in the worst case has |P | × |Q|
nodes. The most time consuming step of our procedure is the

computation of the shortest path. Because the worst case
time complexity for the Dijkstra’s shortest path algorithm is
bounded by the square of the number of nodes. In the worst
case, the time complexity of this sanitization procedure is
(|P | × |Q|)2.

3.2 Incremental Sanitization Computation
The optimal sanitization algorithm described in the previ-

ous section builds an edit-distance graph of |P | × |Q| nodes.
Here, we introduce an optimization. The new algorithm
makes use of the fact that the DFA of the input is of the
shape of a straight line, that is, it does not have loops, it is
connected, and each state has at most one outgoing transi-
tion. For an input string a1a2 . . . am, if we already computed
the optimal sanitization for the prefix a1a2 . . . ai, then we
only need to remember the sanitized string and the cost of
the sanitization so far. Most of the other information com-
puted can be discarded, because the algorithm will never
read from the prefix again. We explain the main idea with
the example in Figure 3, where we assume the same input
string ba and the same sanitization signature a+ as in Fig-
ure 2. In the incremental construction, we process a DFA
transition at a time and create a corresponding edit-distance
graph.

We begin with the transition 0
b−→ 1 and apply the con-

struction of edit-distance graph described in the previous
section to get the edit-distance graph in Figure 3(a). We
apply Dijkstra’s single source shortest path algorithm from
the initial node (0, a) to all nodes associated with the DFA
state 1, which is the state after reading b. In this case, we
only have two such nodes (1, a) and (1, b). We then obtain
a minimal cost path to the node (1, a) with an empty string
ε as the optimal sanitization and a minimal cost path to the
node (1, b) with an optimal sanitization a. We call a pair of a
sanitized string and the cost a sanitization record. We main-
tain a mapping Record from a graph node to a sanitization
record in the algorithm. Here we have Record(1, a) = ((ε), 1)
and Record(1, b) = ((a), 1) We then drop the edit-distance
graph of the symbol b.

In the next iteration, we construct the edit-distance graph
of the transition 1

a−→ 2 (Figure 3(b)). Here we start the
single source shortest path algorithm from all initial nodes
(those associated with the state 1, namely the nodes (1, a)
and (1, b)). The initial condition of each node is recoded in
the mapping Record computed from the previous iteration.
The algorithm then computes a minimal cost path from
(1, a) and from (1, b) to the final node (2, b). In this example,
from both initial nodes, the algorithm finds paths to the final

node with the cost 1 (the paths are (1, b)
(a,a),0−−−−→, (2, b) and

(1, a)
(a,a),0−−−−→, (2, b), respectively). Because the two sanitiza-

tions have the same cost, the algorithm can choose any of
them as the final result. In Figure 3, the algorithm chooses
the latter.

Here, we formally describe the incremental algorithm. Let
A = 〈Q,Σ, δ, q0, F 〉 be the DFA for the sanitization signa-
ture. For the input string w, we first build a DFA X such
that L(X) = {w}. For convenience, we use 0 for the ini-
tial state, j for the state after reading the j-th symbol in
w. For each length-one substring w[c] of w, c ∈ [1, |w|], we
create an edit-distance graph Gc using the following pro-
cedure. Assume that now our input string is w[c]. We
create a DFA Xc = 〈{c − 1, c},Σ, δ, c − 1, {c}〉 such that

0, b 1, b

0, a 1, a

cost = 1
sanit = a

cost = 1
sanit = ε

(
λ
,
a
)
,
1

(b, a), 1
(b, λ), 1

(λ, a), 1

(b
, a

),
1

(
λ
,
a
)
,
1

(b, λ), 1

(λ, a), 1

(a) Edit-Distance Graph for
the Symbol “b”

1, b 2, b

1, a 2, a

cost = 1
sanit = a

(a, a), 0
(a, λ), 1

(λ, a), 1

(a
, a

),
0

(
λ
,
a
)
,
1

(
λ
,
a
)
,
1

(a, λ), 1

(λ, a), 1

(b) Edit-Distance Graph for
the Symbol “a”

Figure 3: Computing Optimal Sanitization Incrementally

L(Xc) = {w[c]}. Notice that Xc has only two states c − 1
and c. The state c − 1 is the only initial state and c is the
only final state. We construct Gc = 〈V,E〉 using the pro-
cedure in Section 3.1. It follows that V = {c − 1, c} × Q,
the set of initial nodes is {(c− 1, q) | q ∈ Q}, and the set of
final nodes is {(c, q) | q ∈ Q}. Here we have two exceptions.
For the graph G1 the initial node is (0, q0) and for the last
graph G|w| the final nodes are {(c, q) | q ∈ F}. When com-
puting the shortest path to each final node, the algorithm
obtains from the map Record the sanitization record of each
initial node, if there is one. Similarly, after the shortest path
to all final nodes from each initial node are computed, the
algorithm updates the sanitization record.

To be more specific, the algorithm works in an iterative
manner. At the i-th iteration, the algorithm creates the edit-
distance graph Gi, computes the shortest paths from initial
nodes to all final nodes, updates the map Record, and then
drops the graph Gi for saving space. When the graph G|w| is
computed, we can obtain the optimal sanitized strings from
the set of sanitization records {Record(|w|, f) | f ∈ F}.

Theorem 2 (Correctness). Let A be the DFA of the
sanitization signature, w be the input string, and w′ be the
sanitized strings generated by the incremental algorithm. Then
dist(w,w′) ≤ dist(w,w′′) for all strings w′′ ∈ L(A).

Each edit-distance graph in the worst case has 2|Q| nodes.
For the computation of shortest path in each edit-distance
graph, one needs to try at most |Q| source nodes, one for
each state of the sanitization signature DFA. The worst case
time complexity for the Dijkstra’s shortest path algorithm
is bounded by the square of the number of nodes (2|Q|)2.
The total number of edit-distance graphs to be computed
is |P |. In the worst case, the time complexity needed for
the analysis of each edit-distance graph is |P | × 2|Q| × (2×
|Q|)2=|P | × |Q|3 × 8. Comparing with the basic algorithm,
the incremental algorithm uses less space and is expected to
be faster for longer input strings.

3.3 Pre-computation of Edit-Distance Graphs
It is crucial to keep the runtime cost of sanitization low

since it will directly affect the responsiveness of the given
web application. It can be worthwhile to sacrifice some
space efficiency in order to reduce the runtime cost of sani-
tization. The most time-consuming step in the sanitization
approach we described in the previous section is the compu-
tation of sanitization records. Here we present an approach
that pre-computes all possible edit-distance graphs and the
sanitization records offline. So we do not need to do the

heavy computation for each new input. Another advantage
of the approach based on pre-computation is that there can
be a lot of redundancy when there are multiple occurrences
of the same symbol in the input string. For example, for an
input string bbabb, the incremental algorithm will recompute
the edit-distance graph of the string b several times which is
potentially very wasteful.

Indeed, since the alphabet symbols are finite, it is possible
to pre-compute the edit-distance graph for each alphabet
symbol. The only thing we need to deal with is that, in this
approach the initial sanitization records are unknown.

The pre-computation algorithm consists of two-stages: (1)
pre-compute edit-distance graphs and the sanitization records
offline and (2) use the pre-computed sanitization records to
compute the optimal sanitization at runtime. For the first
stage, the sanitization record of each initial node will affect
the final decision of shortest paths. Consider the example
in Figure 3(b). If the initial cost of the node (1, b) is larger
than the initial cost of the node (1, a), then the minimal

cost path has to be (1, a)
(a,a),0−−−−→ (2, b). Otherwise, if the

initial cost of the node (1, a) is larger than the initial cost
of the node (1, b), then the minimal cost path has to be

(1, b)
(a,a),0−−−−→ (2, b).

The sanitization records are unknown in the pre-computation
stage. Therefore, in each final node, we have to remember a
sanitization record for each initial node. This can be done
very easily. For each edit-distance graph and for each ini-
tial node, we apply the single source shortest path algorithm
and compute the sanitization record of each final node.

Example pre-computed edit-distance graphs for the DFA
in Figure 2(b) can be found in Figure 4. We put the sanitiza-
tion record on the right side of each final node. Notice that
we got only the sanitization record from the node (0, a) in
the node (1, a), because (1, a) is unreachable from the node
(0, b).

In the second stage, we make use of the pre-computed
edit-distance graphs and sanitization records to speed up
the sanitization finding procedure. The algorithm for this
stage is almost identical to the incremental algorithm, except
that we replace the procedure of building new edit-distance
graphs with a new procedure that checks the pre-computed
edit-distance graph. To be more specific, instead of building
the edit-distance graph Gc, the algorithm checks the saniti-
zation records of the pre-computed graph of the symbol w[c].
For each final node v, the algorithm obtains the sanitization
records of the corresponding initial nodes from Record and
computes an optimal sanitization record r. It then updates
the map Record(v) = r.

Theorem 3 (Correctness). Let A be the DFA of the
sanitization signature, w be the input string, and w′ be the
sanitized string generated by the procedure described in this
subsection. Then dist(w,w′) ≤ dist(w,w′′) for all strings
w′′ ∈ L(A).

We now analyze the complexity of the two stages of the al-
gorithm. For the first stage, each pre-computed edit-distance
graph in the worst case has 2|Q| nodes. For the computa-
tion of shortest path in each edit-distance graph, one needs
to try at most |Q| source nodes, one for each state of the
sanitization signature, for getting the sanitization records.
The worst case time complexity for the Dijkstra’s shortest
path algorithm is bounded by the square of the number of

0, b 1, b

0, a 1, a

From(0, a) :
cost = 1
sanit = a
From(0, b) :
cost = 1
sanit = a

From(0, a) :
cost = 1
sanit = ε

(
λ
,
a
)
,
1

(b, a), 1
(b, λ), 1

(λ, a), 1

(b
, a

),
1

(
λ
,
a
)
,
1

(b, λ), 1

(λ, a), 1

(a) Pre-computed Edit-
Distance Graph of the
Symbol “b”

0, b 1, b

0, a 1, a

From(0, a) :
cost = 0
sanit = a
From(0, b) :
cost = 0
sanit = a

From(0, a) :
cost = 1
sanit = ε

(a, a), 0
(a, λ), 1

(λ, a), 1

(a
, a

),
0

(
λ
,
a
)
,
1

(
λ
,
a
)
,
1

(a, λ), 1

(λ, a), 1

(b) Pre-computed Edit-
Distance Graph of the
Symbol “a”

Figure 4: Pre-computed Edit-Distance Graphs

nodes (2|Q|)2. The total number of edit-distance graph to
be computed is |Σ|. In the worst case, the time complex-
ity needed for the analysis of each edit-distance graph is
|Σ| × |Q| × (2|Q|)2=|Σ| × |Q|3 × 4.

For the second stage, the total number of iterations is
|P |. For each iteration, the algorithm gets the pre-computed
sanitization records and reads from Record at most k times,
where k equals to the maximum number of initial nodes |Q|.
Therefore, the worst case complexity of the second stage is
|P | × |Q|. Note that, only the time complexity of second
stage affects the runtime cost since the first stage is com-
puted offline based on the sanitization signature automa-
ton.

4. EXPERIMENTS
In this section we discuss the experiments we conducted

to evaluate our optimal sanitization synthesis approach.

4.1 Signature Genration and Patch Synthesis
We have integrated the optimal patch generation tech-

nique we present in this paper to the online service Patcher [24].
Patcher allows users to upload their PHP web applications
for detecting, viewing and repairing vulnerabilities. Patcher
consists of several components. Pixy [15] is a vulnerabil-
ity analysis tool for PHP, and it performs taint analysis
to identify potentially vulnerable sinks (sinks that depend
on external inputs) and generates dependency graphs that
show how the external inputs flow into the sinks. Given
a dependency graph that characterizes string manipulation
operations, Stranger [35] implements forward and backward
symbolic reachability analysis we described earlier. Stranger
uses the automata package of MONA tool [5] to store the
automata constructed during string analysis symbolically.

We use the sanitization signature generation technique we
discussed earlier to generate the sanitization signature using
the forward and backward symbolic reachability analyses
implemented in Stranger [35] . Based on the sanitization
synthesis techniques we described in this paper we gener-
ate sanitization statements and insert them at the program
points where user inputs are read by the application. These
sanitization statements then modify malicious inputs to be-
nign ones at run time.

We experimented on 10 open source PHP applications
that include 2961 files with totally 395132 lines of code.
Patcher adopts a distributed framework and employs a 32-
bit Java Virtual Machine (JVM) with 2 GB of memory as
an individual Worker to run each taint/string analysis task.
Table 1 summarizes the analysis result. In these PHP source

codes, we discover 482 of SQL injection tainted sinks, 3536
of XSS tainted sinks and 1477 of MFE tainted sinks. We
conduct forward analysis on 482 SQL tainted sinks against
four kinds of SQL injection attack patterns, on 3536 XSS
tainted sinks against nine kinds of XSS attack patterns and
on 1477 MFE (Malicious File Execution) sinks against one
attack pattern. With respect to each attack pattern, we
found that there are totally 1719 SQL injection vulnerabili-
ties, 14747 cross site scripting vulnerabilities and 562 mali-
cious file execution vulnerabilities. Note that a tainted sink
may correspond to multiple vulnerabilities against different
attack patterns. For each vulnerability, Patcher conducted
sanitization analysis to characterize malicious inputs. It has
generated 1595 (out of 482×4) vulnerability signatures for
SQL injections, 13477 (out of 3536×9) for XSS attacks and
562 (out of 1477 × 1) for MFE attacks. Patcher takes the
compliment of these vulnerability signatures to synthesize
sanitization statements.

Note that the reachability analysis on the dependency
graphs loses precision during the fixpoint computation (us-
ing widening), in replace operation variations (such as first-
match or longest-match), in un-modeled functions (using
arbitrary words), and when relational constraints influence
control flow. We did not observe false positives due to widen-
ing or replacement approximations in experiments. How-
ever, we did observe false positives due to un-modeled built-
in functions and over approximation of relations among in-
put variables. This could be improved by more sophisticated
modeling and relational string analysis. In the next subsec-
tion, we evaluate the runtime performance of the synthesized
sanitizers.

4.2 Runtime Performance Evaluation
To be useful in practice, runtime cost of the sanitizers

we generate must be low. As we discussed in Section 3
runtime cost depends on the length (|P |) of the input string
and the number of states (|Q|) of the sanitization signature
automaton.

To evaluate the runtime performance of synthesized san-
itizers, we randomly generate sample inputs and check the
average time of finding the optimal sanitization of these in-
puts against three sanitization signatures (denoted as |Q|=12,
|Q|=62, and |Q|=74). These signatures are manually se-
lected from the previous analysis to represent typical sig-
natures with different number of states. For each string
length, we randomly generate 1000 sample strings (restricted
to characters that appear in the attack pattern). Figures 5
and 6 highlight the runtime cost of the Incremental al-
gorithm and the Pre-computation algorithm, respectively,
for three different sanitization signatures, demonstrating the
linear increase in time as the string length increases. This
confirms linear time complexity in |P | of both algorithms.
The performance improvement between the Incremental

and Pre-computation algorithms is quite significant. Con-
sider an input string with 40 characters and the sanitization
signature with |Q| =74. The Incremental algorithm takes
around one sec (Figure 5) to find an optimal sanitization,
while using the Pre-computation algorithm it takes only
4 milli-seconds (Figure 6), achieving a 250 times speed-up.
Furthermore, it takes nearly 60 seconds using the Basic al-
gorithm on the same example. We achieve a nearly 15000
times speed-up using the Pre-computation algorithm rather
than searching the optimal edition in the whole automaton

Table 1: Analysis Summary

Application # of Files # of Lines # of Tainted Sinks # of Vulnerabilities Analysis Time

SQLI XSS MFE Total SQLI XSS MFE Total milli-sec
benchmarks 10 397 0 8 0 8 0 56 0 56 126816

e107 218 11303 0 0 0 0 0 0 0 0 64746
examples 5 47 0 0 0 0 0 0 0 0 1249
market 22 2566 43 23 12 78 12 34 8 54 114189

moodle1 6 1319 273468 0 1888 773 2661 0 2280 103 2383 15313148
nucleus3.64 67 23522 0 7 16 23 0 54 2 56 101439

PBLGuestbook 3 1566 8 1 2 11 28 0 2 30 207525
php-fusion-6-01-18 1156 58542 129 1399 597 2125 371 9393 423 10187 37699265

schoolmate 63 8287 291 149 0 440 1140 1149 0 2289 11576501
sendcard 3-4-1 72 11215 1 60 40 101 4 502 17 523 817539

servoo 26 4219 10 1 37 48 40 9 7 56 153862

Total 2961 395132 482 3536 1477 5495 1595 13477 562 15634 66176279

with direct composition. This improvement facilitates run-
time patching in practice for real applications.

Figure 5: Performance of the Incremental algorithm

Figure 6: Performance of the Pre-computation algorithm

4.3 Sanitization Evaluation
We evaluate the sanitizer quality in this subsection by

investigating sanitized inputs. Table 2 shows a list of input
patterns that are used to specify desired formats of user
inputs, as well as a list of attack patterns that are used to
specify attack strings that may raise a vulnerability when it
is taken by a sensitive function.

Given an attack pattern A, let S(A) denote the result DFA
of backward analysis for a vulnerable sink with respect to
the attack pattern A. Let M denote the DFA that accepts

the complement set of L(M). Let I be a given input pat-
tern. The sanitization signature used by our optimal patch
sanitizer characterizes safe (and in the desired format) in-
puts. The signature is composed by taking the automata
intersection of I and S(A). On the other hand, to compare
the min cut approach presented in [36], we also generate the
vulnerability signature that characterizes all malicious (or
not in the format) inputs. The signature is composed by
taking the automata union of I and S(A).

For the min-cut sanitizer, we first compute the minimal
cut to identify the set of characters that have to be deleted.
The min cut approach ensures that after removing all the
characters in the cut to reform the input, the input is not
accepted by the vulnerability signature. We use a very sim-
ple vulnerable PHP script in which a user input is directly
taken by a sensitive function to ease the comparison on the
original input to the sanitized one. In general, the backward
analysis result can be far different from the attack pattern,
depending on string operations involved in the script.

Table 3 shows several examples on how an input string
is modified by our optimal patch sanitizer and the min-cut
sanitizer. Lets first consider cases with only attack patterns
(#A). Both optimal patch sanitizer and min-cut sanitizer
can modify an attack string into a safe one. However, our op-
timal patch sanitizer achieves minimal edition for all cases;
while min-cut sanitizer on the other hand may delete extra
characters that are harmless and do not contribute to the
attack string in the sink with respect to the attack pattern.

The advantage of minimal edition turns out to be signif-
icant when we consider input patterns. For all cases where
we use input patterns (#I) to specify the desired formats on
inputs, our optimal patch sanitizer can modify typo inputs
to the desired ones with minimal edition; the min-cut sani-
tizer deletes all the characters and returns an empty string
ε. This shows the restriction of a cut-based approach: the
modification based on only deletion has very limited ability
to transform a string into a specific format.

Finally, we discuss the cases with the composition of input
patterns and attack patterns (#I, #A). In this case, our
optimal patch sanitizer can still find a desired format that
is safe with respect to the attack pattern. Note that input
patterns themselves are not sufficient to be used to guarantee
safe inputs. For example, the input pattern I8 specifies an
email address format where it allows arbitrary characters

Table 2: Examples of attack patterns and input patterns

Attack Pattern Regular Expression
A1 Script Tag /.*\<SCRIPT.*\>.*/
A2 Escaping JavaScript /.*\\”;.*\/\/.*/
A3 SQL ASCII /.*((\%27) |(\’)) \s*((\%6F) |o|(\%4F)) \s*((\%72) |r |(\%52)) \s*.*/
A4 SQL UNION /.*((\%27)|(\’))union.*/
A5 VBScript /.*vbscript:.*/
A6 Exec Directive /.*exec(\s|\+)+(s|x)p.*/
Input Pattern Regular Expression
I1 Time String /([1-9]|1[012]):(0[0-9]|[1-5][0-9]) ?(am|AM|pm|PM)/
I2 Date String /(0?[1-9]|1[012])(/|-|\.)(0?[1-9]|[12][0-9]|3[01])(/|-|\.)(19|20)[0-9][0-9]/
I3 US Telephone Number /\([0-9][0-9][0-9]\)[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]/
I4 Currency String /\$?[1-9][0-9]{0,2}(,[0-9][0-9][0-9])*(\.[0-9]([0-9]{0,2}))?/
I5 URL ”Slug” /([a-z]|[0-9]|-)([a-z]|[0-9]|-)([a-z]|[0-9]|-)([a-z]|[0-9]|-)+/
I6 Hex Number /(#|0x)[a-f0-9]+/
I7 User ID String /([a-zA-Z]|[0-9]|-/)+/
I8 Email Address /[∧@]+\@([0-9]|[a-z]|-)+\.[a-z]+/
I9 URL /(https:\/\/)(-|[0-9]|[a-z])+\.([a-z])(\/|-|[a-z])*(\/)/
I10 IP Address /(25[0-5]|2[0-4][0-9]|[0-1]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[0-1]?[0-9][0-9]?)

\.(25[0-5]|2[0-4][0-9]|[0-1]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[0-1]?[0-9][0-9]?)/

(except @) used as the user name. As shown in Table 3 , for
the bottom cases of I8, an input that may result in an XSS
attack (or a SQL injection) can pass the sanitizer without
any modification. Such a malicious input is modified to a
benign one when we compose our sanitization signature with
attack patterns, e.g., (I8, A1) and (I8, A3).

5. RELATED WORK
Due to its importance in security, string analysis has been

widely studied. One influential approach has been grammar-
based string analysis that statically computes an over ap-
proximation of the values of string expressions in Java pro-
grams [6] which has also been used to check for various types
of errors in Web applications [10, 21, 32, 33]. In [21, 32],
multi-track DFAs, also known as transducers, are used to
model replacement operations. Several string analysis tools
that use symbolic string analysis based on DFA encodings
have been proposed [28, 9, 13, 37]. BEK [13] adopts sym-
bolic finite automata and transducers to conduct string anal-
ysis and sanitizer analysis. Veanes et al. [30] adopt parallel
computation on symbolic string analysis improving the scal-
ability of automata-based string analysis of string manipu-
lating programs.

String constraint solvers [1, 19, 40, 18, 17, 26] provide de-
cision procedures for word equations with length constraints
that can be generated via applying symbolic execution to
string manipulating programs [26]. HAMPI [17] and Kaluza [26]
are bounded string constraint solvers that search for a string
that satisfies a given set of string constraints by bound-
ing the string length. PASS [18] adopts parameterized ar-
rays instead of bit-vectors [17, 26]. This type of bounded
analysis cannot be used for sound string analysis whereas
the string analysis techniques we present in this paper are
sound. CVC4 [19], Z3-Str [40] and NORN [1] are SMT-based
solvers for reasoning satisfiability of string constraints over
unbounded strings and integers. Among them the solver
Norn also has the capability of computing Craig interpolant,
which enables a CEGAR-based software model checking pro-
cedure [11] for the analysis of string manipulating programs.
Aydin, Bang and Bultan [3] integrate automata-based string
analysis [37] with model counting techniques to string con-
straint solving. These solvers can be used to detect vulner-
abilities in string manipulating programs while generating a
witness for vulnerable programs, but not how a witness can

be fixed or how a vulnerability can be fixed as we did in this
work.

There has been previous work on securing applications au-
tomatically, e.g., by separation of data and code [29, 25, 8,
12] and by placing sound sanitizers [27, 20]. Su and Wasser-
man [29] present SQLCHKS for SQL injection attacks, gen-
erating filters that block user queries in which the input
substrings change the syntactic structure of the rest of the
query. Samuel, Saxena, and Song [25] secure web application
vulnerabilities by enforcing predefined web language frame-
works. deDacota [8] realizes separation of code and data in
web pages. WEBLOG [12] also ensures that user inputs are
never treated as SQL keywords. ScriptGard [27] can detect
and repair incorrect placement of sanitizers. Livshits and
Chong [20] propose automatic sanitizer placement by ana-
lyzing the flow of tainted data in the program. Compared
to these work, we address how to to eliminate string vulner-
abilities by synthesizing effective sanitization statements for
user inputs that composes desired input patterns and safe
inputs with respect to attack patterns. As for the implica-
tions of patching a web application with multiple sanitizers
synthesized from multiple attack patterns and input pat-
terns, it is possible to synthesize one sanitizer that does all
sanitizes’ work by taking the signature as the intersection of
all the sanitization signatures.

DFA based symbolic reachability analysis has been used
to verify the correctness of string sanitization operations in
PHP programs before [38, 37]. In [36] a vulnerability sig-
nature (that characterizes all bad inputs) and a patch gen-
eration technique based on vulnerability signatures is pre-
sented. The generated patches are based on a min-cut algo-
rithm that sanitizes the input by deleting a fixed set of char-
acters. The min-cut approach finds a cut such that deleting
the set of characters in the cut from any input transforms the
input to a safe one (where empty string is always considered
safe). Our experiments show that when min-cut approach is
used together with the input patterns, the cut includes all
characters in many cases. This makes the min-cut approach
delete all the input string, resulting in an empty string.

Sanitization is commonly used in web applications to mod-
ify the user input to obtain a safe and desirable string, which
indicates that developers are not content with using a pure
validation approach that just rejects the offending input.
Most existing approaches rely on existing threat models and

Table 3: Optimal Patch Sanitizer v.s. Min-Cut Sanitizer [36]

Input String Optimal Patch (Pre-computation) Min-Cut Patch
A1 <SCRIP <SSCRIP IMG ”””>SCRIP

T>alert(”XSS”)</SCRIPT>”> T>alert(”XSS”)</SCRIPT>”> T>alert(”XSS”)/SCRIPT>”>
A1 <SCR<SCRIPT IPT test <SCR<SCRIPT!IPT test SCRSCRIPT IPT test
A2 <IMG \”alert(’XSS’);// <IMG \”yalert(’XSS’);// IMG \”alert(’XSS’);//
A3 ’ or ”=” – ’! or ”= ” – or = –
A4 ’union ALL SELECT password ’uunion ALL SELECT password ’nion ALL SELECT password

FROM users WHERE username = FROM users WHERE username = FROM sers WHERE sername =
’admin’/* ’admin’/* ’admin’/

A5 <IMG SRC=’vb <IMG SRC=’ b <IMG SRC=’b
script : msgbox(”XSS”)’ script:msgbox(”XSS”)’ script : msgbox(”XSS”)’

A6 exec+xp cmdshell ’cmd.exe dir c:’ exxec+xp cmdshell ’cmd.exe dir c:’ exe+xp cmdshell ’cmd.exe dir :’
I1 2-31 am 2:31 am ε
I2 102-302-2031 10-30-2031 ε
I3 000003-0010 (000)003-0010 ε
I4 12345 $1.345 ε
I5 add calendar eventS add-calendarevent ε
I6 0x1ggg 0x1 ε
I7 Jimmy.Lin Jimmy-Lin ε
I8 example#gmail.com example@gmail.com ε
I9 ftp://example.com/#test/ https://example.com/test/ ε
I10 192,4444.19.3 192.44.19.3 ε
I8 <SCRIPT>alert(’2’)</SCRIPT>@nccu.edu <SCRIPT>alert(’2’)</SCRIPT>@nccu.edu ε
I8, A1 <SCRIP>alert(’2’)</SCRIPT>@nccu.edu ε
I8 ’ or ”=” – @nccu.edu ’ or ”=” –@nccu.edu ε
I8, A3 ’ ! or ”=” –@nccu.edu ε

can become ineffective when new attacks emerge. Our ap-
proach is fully parameterized with respect to attack and in-
put patterns and can be applied to future vulnerabilities
when they are characterized via attack patterns. For in-
stance, there are several web development frameworks that
can be used to prevent XSS when rendering the HTML con-
tent. XHP is an augmentation of PHP developed at Face-
book to allow XML syntax for the purpose of creating cus-
tom and reusable HTML elements for server side rendering.
Consider a vulnerable-like XHP script.

echo Hi , {$ POST [’name ’]};

The script that echos raw user input “$ POST[’name’]” is
prone to an XSS attack, but by using XHP, the rendering
point of “$ POST[’name’]” (encapsulated in a pair of brace
symbols) will be treated as an HTML text (PCDATA). An
attacking script in $ POST[’name’] will then be escaped by
XHP automatically. AngularJS and ReactJS frameworks
are similar to XHP but for client side rendering, where, when
variables that are encapsulated with double braces, (e.g.,
“this.prop.name” below), the content of the variable will be
escaped automatically at run time.

r ende r : function () {
return (Hi , { this . prop . name}) ;}

However, these techniques are code-insensitive and, there-
fore, cannot guarantee that only safe values reach the sink.
The echo point of the XHP script below could be vulner-
able to command injections since the “script” HTML tags
are written in the script, where only the execution function
name is from the POST.

echo <s c r i p t>{$ POST [’ foo ’]}{ ”() ”} ;</ s c r i p t> ;

If the POST value is “alert” rather than “foo”, the script
will execute the alert function in JavaScript. Note that
“alert”is still“alert”after escaping provided in modern frame-
works and hence it is not protected. To enforce the desired
function to be executed, developers can specify the input
pattern as the desired function names. Our patch is capable

of preventing attacks or removing typos, e.g., by converting
“fo0” to “foo”, to enforce the correct execution.

Finally, computing the edit-distance between a string and
a finite automaton or a string arises in a variety of applica-
tions in computational biology, text processing, and speech
recognition. Wagner [31] sketched an algorithm which uses
finite state automata to calculate the minimal edit distance
required for correcting an erroneous word belonging to a
regular language. Kashyap and Oommen [16] adopted dy-
namic programming principles to calculate the edit distance
recursively with more memory for keeping results of inter-
nal edit distance computation, reducing the complexity of
the while calculating process [31]. Allauzen and Mohri [2]
propose a linear space algorithm to find out minimal edit dis-
tance between two finite automata. They further consider a
word lattice as a weighted automaton, and extend the algo-
rithm to the edit-distance between a string and a weighted
automaton. We adopt the linear algorithm [2] with pre com-
putation on needed information to improve the performance
at runtime. While word corrections have been widely used
in many applications such as spelling correction [22, 7], we
are not aware of previous work used in synthesizing optimal
web security sanitizers. Our pre-computation algorithm it-
self alone provides an effective way to modify input strings.
The techniques could be integrated with modern web secu-
rity techniques, e.g., in implementing automatic escaping,
and could be applied to other contexts as well.

6. CONCLUSIONS
We introduce the concept of code-sensitive and input-

sensitive sanitization. By combining automata-based string
analysis techniques with minimal edit distance algorithms,
we present a novel automated sanitization synthesis tech-
nique that generates input-sensitive sanitizers that are ca-
pable of composing desired input patterns with safe inputs,
guaranteeing that no strings matching attack patterns can
reach sinks. We propose minimal edit distance algorithms
that improve the performance of automatically generated
sanitizers significantly.

7. REFERENCES
[1] P. A. Abdulla, M. F. Atig, Y. Chen, L. Hoĺık,

A. Rezine, P. Rümmer, and J. Stenman. String
constraints for verification. In Computer Aided
Verification - 26th International Conference, CAV
2014, Vienna, Austria, July 18-22, 2014. Proceedings,
pages 150–166, 2014.

[2] C. Allauzen and M. Mohri. Linear-space computation
of the edit-distance between a string and a finite
automaton. In In London Algorithmics 2008: Theory
and Practice, 2008.

[3] A. Aydin, L. Bang, and T. Bultan. Automata-based
model counting for string constraints. In Computer
Aided Verification - 27th International Conference,
CAV 2015, San Francisco, CA, USA, July 18-24,
2015, Proceedings, Part I, pages 255–272, 2015.

[4] C. Bartzis and T. Bultan. Widening arithmetic
automata. In CAV, pages 321–333, 2004.

[5] BRICS. The MONA project.
http://www.brics.dk/mona/.

[6] A. S. Christensen, A. Møller, and M. I. Schwartzbach.
Precise analysis of string expressions. In SAS, pages
1–18, 2003.

[7] S. Cucerzan and E. Brill. Spelling correction as an
iterative process that exploits the collective knowledge
of web users. In D. Lin and D. Wu, editors,
Proceedings of EMNLP 2004, pages 293–300,
Barcelona, Spain, July 2004. Association for
Computational Linguistics.

[8] A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado,
C. Kruegel, and G. Vigna. dedacota: toward
preventing server-side xss via automatic code and data
separation. In Proceedings of the 2013 ACM SIGSAC
conference on Computer and Communications
Security, CCS ’13, pages 1205–1216, 2013.

[9] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and
L. Tao. A static analysis framework for detecting sql
injection vulnerabilities. In COMPSAC, pages 87–96,
2007.

[10] C. Gould, Z. Su, and P. Devanbu. Static checking of
dynamically generated queries in database
applications. In ICSE, pages 645–654, 2004.

[11] T. A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre. Software verification with BLAST. In SPIN,
pages 235–239, 2003.

[12] T. L. Hinrichs, D. Rossetti, G. Petronella, V. N.
Venkatakrishnan, A. P. Sistla, and L. D. Zuck.
Weblog: A declarative language for secure web
development. In Proceedings of the Eighth ACM
SIGPLAN Workshop on Programming Languages and
Analysis for Security, pages 59–70. ACM, 2013.

[13] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and
M. Veanes. Fast and precise sanitizer analysis with
BEK. In 20th USENIX Security Symposium, 2011.

[14] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee,
and S.-Y. Kuo. Securing web application code by
static analysis and runtime protection. In Proceedings
of the 13th international conference on World Wide
Web, WWW ’04, pages 40–52, 2004.

[15] N. Jovanovic, C. Krügel, and E. Kirda. Pixy: A static
analysis tool for detecting web application
vulnerabilities (short paper). In S&P, pages 258–263,

2006.

[16] R. L. Kashyap and B. J. Oommen. An effective
algorithm for string correction using generalized edit
distance - ii. computational complexity of the
algorithm and some applications. Inf. Sci.,
23(3):201–217, 1981.

[17] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and
M. D. Ernst. Hampi: a solver for string constraints. In
ISSTA, pages 105–116, 2009.

[18] G. Li and I. Ghosh. PASS: string solving with
parameterized array and interval automaton. In
Hardware and Software: Verification and Testing - 9th
International Haifa Verification Conference, HVC
2013, Haifa, Israel, November 5-7, 2013, Proceedings,
pages 15–31, 2013.

[19] T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and
M. Deters. A DPLL(T) theory solver for a theory of
strings and regular expressions. In Computer Aided
Verification - 26th International Conference, CAV
2014, Vienna, Austria, July 18-22, 2014. Proceedings,
pages 646–662, 2014.

[20] B. Livshits and S. Chong. Towards fully automatic
placement of security sanitizers and declassifiers. In
Proceedings of the 40th annual ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’13, pages 385–398,
2013.

[21] Y. Minamide. Static approximation of dynamically
generated web pages. In WWW, pages 432–441, 2005.

[22] K. Oflazer. Error-tolerant finite-state recognition with
applications to morphological analysis and spelling
correction. Comput. Linguist., 22(1):73–89, Mar. 1996.

[23] OWASP. Top 10 2013. https:
//www.owasp.org/index.php/Top_10_2013-T10.

[24] Patcher. Patcher online service.
http://soslab.nccu.edu.tw/patcher.

[25] M. Samuel, P. Saxena, and D. Song. Context-sensitive
auto-sanitization in web templating languages using
type qualifiers. In Proceedings of the 18th ACM
conference on Computer and communications security,
CCS ’11, pages 587–600, 2011.

[26] P. Saxena, D. Akhawe, S. Hanna, F. Mao,
S. McCamant, and D. Song. A symbolic execution
framework for javascript. In S&P, pages 513–528,
2010.

[27] P. Saxena, D. Molnar, and B. Livshits. Scriptgard:
automatic context-sensitive sanitization for large-scale
legacy web applications. In CCS, pages 601–614, 2011.

[28] D. Shannon, S. Hajra, A. Lee, D. Zhan, and
S. Khurshid. Abstracting symbolic execution with
string analysis. In TAICPART-MUTATION, pages
13–22, 2007.

[29] Z. Su and G. Wassermann. The essence of command
injection attacks in web applications. In Proceedings of
the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 372–382,
2006.

[30] M. Veanes, T. Mytkowicz, D. Molnar, and B. Livshits.
Data-parallel string-manipulating programs. In
Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL, pages 139–152, 2015.

[31] R. A. Wagner. Order-n correction for regular
languages. Commun. ACM, 17(5):265–268, May 1974.

[32] G. Wassermann and Z. Su. Sound and precise analysis
of web applications for injection vulnerabilities. In
PLDI, pages 32–41, 2007.

[33] G. Wassermann and Z. Su. Static detection of
cross-site scripting vulnerabilities. In ICSE, pages
171–180, 2008.

[34] F. Yu, M. Alkhalaf, and T. Bultan. Generating
vulnerability signatures for string manipulating
programs using automata-based forward and backward
symbolic analyses. In ASE, pages 605–609, 2009.

[35] F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An
automata-based string analysis tool for php. In
TACAS, pages 154–157, 2010.

[36] F. Yu, M. Alkhalaf, and T. Bultan. Patching
vulnerabilities with sanitization synthesis. In ICSE,
pages 251–260, 2011.

[37] F. Yu, M. Alkhalaf, T. Bultan, and O. H. Ibarra.
Automata-based symbolic string analysis for
vulnerability detection. Formal Methods in System
Design, 44(1):44–70, 2014.

[38] F. Yu, T. Bultan, and O. H. Ibarra. Relational string
verification using multi-track automata. Int. J. Found.
Comput. Sci., 22(8):1909–1924, 2011.

[39] F. Yu and Y.-Y. Tung. Patcher: An online service for
detecting, viewing and patching web application
vulnerabilities. In Proceedings of the 47th Hawaii
International Conference on System Sciences, pages
4878–4886, 2014.

[40] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: a
z3-based string solver for web application analysis. In
Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering,
ESEC/FSE’13, Saint Petersburg, Russian Federation,
August 18-26, 2013, pages 114–124, 2013.

