
An Executable Sequential Specification
for Spark Aggregation

Yu-Fang Chen1, Chih-Duo Hong1, Ondřej Lengál1,2,
Shin-Cheng Mu1, Nishant Sinha3, Bow-Yaw Wang1

1 Academia Sinica, Taiwan
2 Brno University of Technology, Czech Republic

3 IBM Research, India

Abstract. Spark is a new promising platform for scalable data-parallel compu-
tation. It provides several high-level application programming interfaces (APIs)
to perform parallel data aggregation. Since execution of parallel aggregation in
Spark is inherently non-deterministic, a natural requirement for Spark programs
is to give the same result for any execution on the same data set. We present
PURESPARK, an executable formal Haskell specification for Spark aggregate
combinators. Our specification allows us to deduce the precise condition for de-
terministic outcomes from Spark aggregation. We report case studies analyzing
deterministic outcomes and correctness of Spark programs.

1 Introduction

Spark [30,1,31] is a popular platform for scalable distributed data-parallel computation
based on a flexible programming environment with concise and high-level APIs. Spark
is by many considered as the successor of MapReduce [14,26]. Despite its fame, the pre-
cursory computational model of MapReduce suffers from I/O congestion and limited
programming support for distributed problem solving. Notably, Spark has the following
advantages over MapReduce. First, it has high performance due to distributed, cached,
and in-memory computation. Second, the platform adopts a relaxed fault tolerant model
where sub-results are recomputed upon faults rather than aggressively stored. Third,
lazy evaluation semantics is used to avoid unnecessary computation. Finally, Spark of-
fers greater programming flexibility through its powerful APIs founded in functional
programming. Spark also owes its popularity to a unified framework for efficient graph,
streaming, and SQL-based relational database computation, a machine learning library,
and the support of multiple distributed data storage formats. Spark is one of the most
active open-source projects with over 1000 contributors [1].

In a typical Spark program, a sequence of transformations followed by an action are
performed on Resilient Distributed Datasets (RDDs). An RDD is the principal abstrac-
tion for data-parallel computation in Spark. It represents a read-only collection of data
items partitioned and stored distributively. RDD operations such as map, reduce, and
aggregate are called combinators. They generate and aggregate data in RDDs to carry
out Spark computation. For instance, the aggregate combinator takes user-defined func-
tions seq and comb: seq accumulates a sub-result for each partition while comb merges
sub-results across different partitions. Spark also provides a family of aggregate combi-
nators for common data structures such as pairs and graphs. In Spark computation, data
aggregation is ubiquitous.

Programming in Spark, however, can be tricky. Since sub-results are computed us-
ing multiple applications of seq and comb across partitions concurrently, the order
of their applications varies on different executions. Because of indefinite orders of
computation, aggregation in Spark is inherently non-deterministic. A Spark program
may produce different outcomes for the same input on different runs. This form of
non-deterministic computation has other side effects. For instance, the private function
AreaUnderCurve.of in the Spark machine learning library computes numerical integra-
tion distributively; it exhibits numerical instability due to non-deterministic computa-
tion. Consider the integral of x73 on the interval [−2, 2]. Since x73 is an odd function,
the integral is 0. In our experiments, AreaUnderCurve.of returns different results ranging
from−8192.0 to 12288.0 on the same input because of different orders of floating-point
computation. To ensure deterministic outcomes, programmers must carefully develop
their programs to adhere to Spark requirements.

Unfortunately, Spark’s documentation does not specify the requirements formally.
It only describes informal algebraic properties about combinators to ensure correctness.
The documentation provides little help to a programmer in understanding the complex,
and sometimes unexpected, interaction between seq and comb, especially when these
two are functions over more complex domains, e.g. lists or trees. Inspecting the Spark
implementation is a laborious job since public combinators are built by composing a
long chain of generic private combinators—determining the execution semantics from
the complex implementation is hard. Moreover, Spark is continuously evolving and
the implementation semantics may change significantly across releases. We therefore
believe that a formal specification of Spark combinators is necessary to help developers
understand the program semantics better, clarify hidden assumptions about RDDs, and
help to reason about correctness and sources of non-determinism in Spark programs.

Building a formal specification for Spark is far from straightforward. Spark is im-
plemented in Scala and provides high-level APIs also in Python and Java. Because
Spark heavily exploits various language features of Scala, it is hard to derive specifi-
cations without formalizing the operational semantics of the Scala language, which is
not an easy task by itself. Instead of that, we have developed a Haskell library PURES-
PARK [4], which for each key Spark combinator provides an abstract sequential func-
tional specification in Haskell. We use Haskell as a specification language for two rea-
sons. First, the core of Haskell has strong formal foundations in λ-calculus. Second,
program evaluation in Haskell, like Spark, is lazy, which admits faithful modeling of
Spark aggregation. Through the use of Haskell we obtain a concise formal functional
model for Spark combinators without formalizing Scala.

An important goal of our specification is to make non-determinism in various com-
binators explicit. Spark developers can inspect it to identify sources of non-determinism
when program executions yield unexpected outputs. Researchers can also use it to un-
derstand distributed Spark aggregation and investigate its computational pattern. Our
specification is also executable. A programmer can use the Haskell APIs to implement
data-parallel programs, test them on different input RDDs, and verify correctness of
outputs independent of the Spark programming environment. In our case studies, we
capture non-deterministic behaviors of real Spark programs by executing the corre-
sponding PURESPARK specifications with crafted input data sets. We also show that
the sequential specification is useful in developing distributed Spark programs.

Our main contributions are summarized below:

– We present formal, functional, sequential specifications for key Spark aggregate
combinators. The PURESPARK specification consists of executable library APIs. It
can assist Spark program development by mimicking data-parallel programming in
conventional environments.

– Based on the specification, we investigate and identify necessary and sufficient con-
ditions for Spark aggregate combinators to produce deterministic outcomes for gen-
eral and pair RDDs.

– Our specification allows to deduce the precise condition for deterministic outcomes
from Spark aggregation.

– We perform a series of case studies on practical Spark programs to validate our
formalization. With PURESPARK, we find instances of numerical instability in the
Spark machine learning library.

– Up to our knowledge, this is the first work to provide a formal, functional specifica-
tion of key Spark aggregate combinators for data-parallel computation.

2 Preliminaries
Let A be a non-empty set and � : A× A → A be a function. An element i ∈ A is the
identity of � if for every a ∈ A, it holds that a = i � a = a � i. The function � is
associative if for every a, a′, a′′ ∈ A, a� (a′� a′′) = (a� a′)� a′′; � is commutative
if for every a, a′ ∈ A, a � a′ = a′ � a. The algebraic structure (A,�) is a semigroup
if � is associative. A monoid is a structure (A,�,⊥) such that (A,�) is a semigroup
and ⊥ ∈ A is the identity of �. The semigroup (A,�) and monoid (A,�,⊥) are
commutative if � is commutative.

Haskell is a strongly typed purely functional programming language. Similar to
Spark, Haskell programs are lazily evaluated. We use several widely used Haskell func-
tions (Figure 1). fst and snd are projections on pairs. null tests whether a list is empty.
elem is the membership function for lists; its infix notation is often used, as in 0 ‘elem‘ [].
(++) concatenates two lists; it is used as an infix operator, as in [False] ++ [True]. map
applies a function to elements of a list. reducel merges elements of a list by a given
binary function from left to right. foldl accumulates by applying a function to elements
of a list iteratively, also from left to right. concat concatenates elements in a list. con-
catMap applies a function to elements of a list and concatenates the results. lookup finds
the value of a key in a list of pairs. filter selects elements from a list by a predicate.

In order to formalize non-determinism in distributed aggregation, we define the fol-
lowing non-deterministic shuffle function for lists:
shuffle! :: [α]→ [α]
shuffle! xs = ... −− shuffle xs randomly

A random monad can be used to define random shuffling. Instead of explicit monadic
notation, we introduce the chaotic shuffle! function in our presentation for the sake of
brevity. Thus, shuffle! [0, 1, 2] evaluates to one of the six possible lists [0, 1, 2], [0, 2, 1],
[1, 0, 2] [1, 2, 0], [2, 0, 1], or [2, 1, 0] randomly. Using shuffle!, more chaotic functions
are defined.
map! :: (α→ β)→ [α]→ [β]
map! f xs = shuffle! (map f xs)

concatMap! :: (α→ [β])→ [α]→ [β]
concatMap! f xs = concat (map! f xs)

fst :: (α, β)→ α
fst (x,) = x

null :: [α]→ Bool
null [] = True
null (x:xs) = False

(++) :: [α]→ [α]→ [α]
[] ++ ys = ys
x:xs ++ ys = x:(xs ++ ys)

reducel :: (α→α→α)→[α]→α
reducel h (x:xs) = foldl h x xs

concat :: [[α]]→ [α]
concat [] = []
concat (xs:xss) = xs ++ (concat xss)

lookup :: α→ [(α, β)]→ Maybe β
lookup k [] = Nothing
lookup k ((x, y):xys) = if k == x

then Just y else lookup k xys

snd :: (α, β)→ β
snd (, y) = y

elem :: α→ [α]→ Bool
elem x [] = False
elem x (y:ys) = x==y || elem x ys

map :: (α→ β)→ [α]→ [β]
map f [] = []
map f (x:xs) = (f x):(map f xs)

foldl :: (β→α→β)→β→[α]→β
foldl h z [] = z
foldl h z (x:xs) = foldl h (h z x) xs

concatMap :: (α→ [β])→ [α]→ [β]
concatMap xs = concat (map f xs)

filter :: (α→ Bool)→ [α]→ [α]
filter p [] = []
filter p (x:xs) = if p x

then x:(filter p xs) else filter p xs

Fig. 1. Basic functions

The chaotic map! shuffles the result of map randomly; and concatMap! concatenates the
shuffled result of map. For instance, map! even [0, 1] evaluates to [False, True] or [True,
False]; concatMap! fact [2, 3] evaluates to [1, 2, 1, 3] or [1, 3, 1, 2] where fact computes
a sorted list of factors (note that the two sub-sequences [1,2] and [1,3] are kept intact).
repartition! :: [α]→ [[α]]
repartition! xs = let ys = shuffle! xs ...

in yss −− ys == concat yss

The function repartition! shuffles a given list and partitions the shuffled list into several
non-empty lists. For instance, repartition! [0, 1] results in [[0], [1]], [[1], [0]], [[0, 1]], or
[[1, 0]]. The chaotic function can be implemented by a random monad easily; its precise
definition is omitted here.

3 Spark Aggregation
Resilient Distributed Datasets (RDDs) are the basic data abstraction in Spark. An RDD
is a collection of partitions of immutable data; data in different partitions can be pro-
cessed concurrently. We formalize partitions by lists, and RDDs by lists of partitions.

type Partition α = [α] type RDD α = [Partition α]

The Spark aggregate combinator computes sub-results of every partitions in an
RDD, and returns the aggregated result by combining sub-results.
aggregate :: β → (β → α→ β)→ (β → β → β)→ RDD α→ β
aggregate z seq comb rdd = let presults = map! (foldl seq z) rdd

in foldl comb z presults

More concretely, let z be a default aggregated value. aggregate applies foldl seq z to
every partition of rdd. Hence the sub-result of each partition is accumulated by folding
elements in the partition with seq. The combinator then combines sub-results by another
folding using comb.

Note that the chaotic map! function is used to model non-deterministic interleav-
ings of sub-results. To exploit concurrency, Spark creates a task to compute the sub-
result for each partition. These tasks are executed concurrently and hence induce non-
deterministic computation. We use the chaotic map! function to designate non-deter-
minism explicitly.

A related combinator is reduce. Instead of foldl, the combinator uses reducel to
aggregate data in an RDD.
reduce :: (α→ α→ α)→ RDD α→ α
reduce comb rdd = let presults = map! (reducel comb) rdd

in reducel comb presults

Similar to the aggregate combinator, reduce computes sub-results concurrently. The
chaotic map! function is again used to model non-deterministic computation.

Sub-results of different partitions are computed in parallel, but the aggregate com-
binator still combines sub-results sequentially. This can be further parallelized. Observe
that several sub-results may be available simultaneously from distributed computation.
The Spark treeAggregate combinator applies comb to pairs of sub-results concurrently
until the final result is obtained. In addition to concurrent computation of sub-results,
treeAggregate also combines sub-results from different partitions in parallel.

In our specification, two chaotic functions are used to model non-deterministic com-
putation on two different levels. The map! function models non-determinism in comput-
ing sub-results of partitions. The apply! function (introduced below) models concurrent
combination of sub-results from different partitions. It combines two consecutive sub-
results picked chaotically, and repeats such chaotic combinations until the final result is
obtained. Observe that the computation has a binary-tree structure with comb as internal
nodes and sub-results from different partitions as leaves.
apply! :: (β → β → β)→ [β]→ β
apply! comb [r] = r
apply! comb [r, r’] = comb r r’
apply! comb rs = let (ls’, l’, r’, rs’) = ... −− rs == ls’ ++ [l’, r’] ++ rs’

in apply! comb (ls’ ++ [comb l’ r’] ++ rs’)

treeAggregate:: β → (β→α→β)→ (β→β→β)→ RDD α→ β
treeAggregate z seq comb rdd = let presults = map! (foldl seq z) rdd

in apply! comb presults

The treeReduce combinator optimizes reduce by combining sub-results in parallel.
Similar to treeAggregate, two levels of non-deterministic computation can occur.
treeReduce :: (α→ α→ α)→ RDD α→ α
treeReduce comb rdd = let presults = map! (reducel comb) rdd

in apply! comb presults

Pair RDDs. Key-value pairs are widely used in data parallel computation. If the data
type of an RDD is a pair, we say that the RDD is a pair RDD. The first and second
elements in a pair are called the key and the value of the pair respectively.

type PairRDD α β = RDD (α, β)

In a pair RDD, different pairs can have the same key. Spark provides combinators to
aggregate values associated with the same key. The aggregateByKey combinator returns
an RDD by aggregating values associated with the same key. We use the following
functions to formalize aggregateByKey:

hasKey :: α→ Partition (α, β)→ Bool
hasKey k ps = case (lookup k ps) of

Just → True
Nothing→ False

hasValue :: α→ β → Partition (α, β)→ β
hasValue k val ps = case (lookup k ps) of

Just v→ v
Nothing→ val

addTo :: α→ β → Partition (α, β)→ Partition (α, β)
addTo key val ps = foldl (λr (k, v)→ if key == k then r else (k, v):r) [(key, val)] ps

The expression hasKey key ps checks if key appears in a partition of pairs. hasValue key
val ps finds a value associated with key in a partition of pairs. It evaluates to the default
value val if key does not appear in the partition. The expression addTo key val ps adds
the pair (key, val) to the partition ps, and removes other pairs with the same key.

The aggregateByKey combinator first aggregates all pairs with the value z and the
function mergeComb in each partition. If values vs are associated with the same key in a
partition, the value foldl mergeComb z vs for the key is pre-aggregated. Since a key may
appear in several partitions, all pre-aggregated values associated with the key across
different partitions are merged using mergeValue.

aggregateByKey :: γ → (γ → β → γ)→ (γ → γ → γ)→ PairRDD α β → PairRDD α γ
aggregateByKey z mergeComb mergeValue pairRdd =

let mergeBy fun left (k, v) = addTo k (fun (hasValue k z left) v) left
preAgg = concatMap! (foldl (mergeBy mergeComb) []) pairRdd

in repartition! (foldl (mergeBy mergeValue) [] preAgg)

In the specification, we accumulate values associated with the same key by mergeComb
in each partition, keeping a list of pairs of a key and the partially aggregated value for the
key. Since accumulation in different partitions runs in parallel, the chaotic concatMap!
function is used to model such non-deterministic computation. After all partitions fin-
ish their accumulation, mergeValue merges values associated with the same key across
different partitions. The final pair RDD can have a default or user-defined partition-
ing. Since a user-defined partitioning may shuffle a pair RDD arbitrarily, it is in our
specification modeled by the chaotic repartition! function.

Pair RDDs have a combinator corresponding to reduce called reduceByKey. The
reduceByKey function merges all values associated with a key by mergeValue. It follows
a similar computational pattern as aggregateByKey. Note that every key is associated
with at most one value in resultant pair RDDs of aggregateByKey or reduceByKey.
reduceByKey :: (β → β → β)→ PairRDD α β → PairRDD α β
reduceByKey mergeValue pairRdd =

let merge left (k, v) = case lookup k left of Just v’→ addTo k (mergeValue v’ v) left
Nothing→ addTo k v left

preAgg = concatMap! (foldl merge []) pairRdd
in repartition! (foldl merge [] preAgg)

Spark also provides a library, called GraphX, for a distributed analysis of graphs. See
App A for a formalization of some of its key functions.

4 Deterministic Aggregation
Having deterministic outcomes is desired from all aggregation functions. If a function
may return different values on different executions, the function is often not imple-
mented correctly. A program with explicit assumptions on the input data is also de-
sirable. Otherwise, the program may work correctly on certain data sets but produce
unexpected outcomes on others where implicit assumptions do not hold [28]. We now
investigate conditions under which Spark aggregation combinators always produce de-
terministic outcomes. Proofs of the given lemmas can be found in App. C. Proofs of
some crucial lemmas have also been formalized using Agda [4].

We first show how to deal with non-deterministic behaviors in the aggregate com-
binator. Consider a variant of the formalization of aggregate from Section 3:
aggregate’::β → (β → α→ β)→ (β → β → β)→ RDD α→ β
aggregate’ z seq comb rdd = let presults = perm (map (foldl seq z) rdd)

in foldl comb z presults

Observe that we changed the application of the chaotic map! function with an applica-
tion of the permutation perm after the regular map function. The function composition
perm(map ...) is a concrete instantiation of map!, that is, a function that permutes its
list argument. Notice that perm can be pushed inside map:

perm (map f xs) == map f (perm xs).

Assume that rdd was obtained from a list xs by splitting and permuting, that is, rdd
== perm’ (split xs) where split :: [α] → [[α]] satisfies xs == (concat . split) xs. We can
therefore rewrite the computation of presults in aggregate’ to
let pres = perm (map (foldl seq z) (perm’ (split xs))),

After pushing perm inside map, we obtain
let pres = map (foldl seq z) ((perm . perm’) (split xs)).

Since perm . perm’ is also a permutation perm”, we have
let pres = map (foldl seq z) rdd’

where rdd’ is another RDD obtained from xs by splitting and shuffling. Let us call
(deterministic) instances of repartition! as partitionings. As a consequence, we focus
only on proving if calls to aggregateD defined below have deterministic outcomes for
different partitionings of a list into RDDs:
aggregateD:: β → (β → α→ β)→ (β → β → β)→ RDD α→ β

aggregateD z seq comb rdd = let pres = map (foldl seq z) rdd
in foldl comb z pres

-3oreover, we define a deterministic versions of reduce:
reduceD :: (α→ α→ α)→ RDD α→ α

reduceD comb rdd = let presults = perm (map (reducel comb) rdd)
in reducel comb presults

and also treeAggregateD and treeReduceD in a similar way.
In the following, given a function f that takes an RDD as one of its parameters and

contains a single occurrence of the chaotic map! (respectively concatMap!) function,
we use fD to denote the function obtained from f by replacing the chaotic map! (respec-
tively concatMap!) with a regular map (respectively concatMap). A similar reasoning

can show that it suffices to check whether calls to fD have deterministic outcomes for
different partitionings on a list into RDDs.

For better readability, standard mathematical notation of functions is used in the rest
of this section. We represent a Haskell function application f x1 . . . xn as f(x1, . . . , xn).

4.1 aggregate
In this section, we give conditions for deterministic outcomes of calls to the aggregate
combinator aggregate(z, seq ,⊕, rdd) for z :: β, seq :: β × α → β, ⊕ :: β × β → β,
and rdd :: RDD α. We first define what it means for calls to the aggregate combinator
to have deterministic outcomes.
Definition 1. Calls to aggregate(z, seq ,⊕, rdd) have deterministic outcomes if

aggregateD(z, seq ,⊕, part(L)) = foldl(seq , z, L) (1)

for all lists L and partitionings part .

Conventionally, aggregate is regarded as a parallelized counterpart of foldl. For ex-
ample, the sequential aggregate function in the standard Scala library ignores the⊕ op-
erator and is implemented by foldl. This is why we characterize deterministic aggregate
as foldl in Definition 1. Our characterization, however, does not cover all aggregate
calls that always give the same outputs. In particular, it does not cover an aggregate
call where ⊕ is a constant function, which is, however, quite suspicious in a distributed
data-parallel computation and should be reported.

We give necessary and sufficient conditions for aggregate calls to have determi-
nistic outcomes in several lemmas, culminating in Corollary 1. The first lemma al-
lows us to check only conditions on seq and ⊕ over all possible pairs of lists in-
stead of enumerating all possible partitionings on lists. For brevity, we use 〈p1〉 for
foldl(seq , z, p1), and img(foldl(seq , z)) for the image of foldl(seq , z, L) for any list L.
That is, img(foldl(seq , z)) = {y | there is a listL such that foldl(seq , z, L) = y}.
Lemma 1. Calls to aggregate(z, seq ,⊕, rdd) have deterministic outcomes iff:
1. (img(foldl(seq , z)),⊕, z) is a commutative monoid, and
2. for all lists p1, p2 :: [α], 〈p1 ++ p2〉 = 〈p1〉 ⊕ 〈p2〉 .

Note that condition 2 in Lemma 1 is equivalent to saying that 〈·〉 is a list homomor-
phism to the monoid (img(foldl(seq , z)),⊕, z) [6].

The lemma below further helps us reduce the need of testing conditions over all
possible pairs of lists to conditions over elements of α× img(foldl(seq , z)).

Lemma 2. Let ⊕ be associative on γ = img(foldl(seq , z)) and z be the identity of ⊕
on γ. The following are equivalent:

1. for all lists p1, p2 :: [α],
〈p1 ++ p2〉 = 〈p1〉 ⊕ 〈p2〉, (2)

2. for all elements d :: α and e :: γ,
seq(e, d) = e⊕ seq(z, d). (3)

Summarizing the lemmas, we get the following corollary:

Corollary 1. Calls to aggregate(z, seq ,⊕, rdd) have deterministic outcomes iff
1. (img(foldl(seq , z)),⊕, z) is a commutative monoid and
2. for all d :: α and e :: img(foldl(seq , z)), it holds that seq(e, d) = e⊕ seq(z, d).

4.2 reduce
This section explores conditions for deterministic outcomes of calls to reduce(⊕, rdd)
for ⊕ :: α × α → α and rdd :: RDD α. We use the function reduceD defined in
the introduction of Section 4. For reduce, we assume that for any non-empty list, all
partitions of its partitioning are non-empty (otherwise the result of reduce is undefined).

We define deterministic outcomes for reduce as follows.

Definition 2. Calls to reduce(⊕, rdd) have deterministic outcomes if
reduceD(⊕, part(L)) = reducel(⊕, L) (4)

for all lists L and partitionings part .
We reduce the problem of checking if reduce has deterministic outcomes to the

problem of checking if aggregate has deterministic outcomes by the following lemma.
Lemma 3. Calls to reduce(⊕, rdd) have deterministic outcomes iff calls to aggregate(
Nothing, seq ′,⊕′, rdd) have deterministic outcomes, where seq ′ and ⊕′ are as follows:

seq’ x y = case x of
Nothing→ Just y
Just x’→ Just (x’ ⊕ y)

(⊕’) x y = case (x, y) of (Nothing, y’)→ y’
(x’, Nothing)→ x’
(Just x’, Just y’)→ Just (x’ ⊕ y’) .

Combining Corollary 1 and Lemma 3, we get the condition for deterministic out-
comes of reduce(⊕, rdd) calls.

Corollary 2. Calls to reduce(⊕, rdd) have deterministic outcomes iff (α,⊕) is a com-
mutative semigroup.

4.3 treeAggregate and treeReduce
This section gives conditions for deterministic outcomes of calls to the following two
aggregate combinators:

1. treeAggregate(z, seq ,⊕, rdd) for z :: β, seq :: β × α → β, ⊕ :: β × β → β, and
rdd :: RDD α; and

2. treeReduce(⊕, rdd) for ⊕ :: α× α→ α, rdd :: RDD α.

Different from aggregate and reduce, the tree variants have another level of non-deter-
minism modeled by apply!. The chaotic function effectively simulates non-deterministic
computation with a binary-tree structure (Section 3).

To define calls to treeAggregate and treeReduce to have deterministic outcomes,
we use the functions treeAggregateT and treeReduceT obtained by adding an explicit
deterministic instantiation of apply! to treeAggregateD and treeReduceD.

Definition 3. Calls to treeAggregate(z, seq ,⊕, rdd) and treeReduce(⊕, rdd) have de-
terministic outcomes if

treeAggregateT(apply , z, seq ,⊕, part(L)) = foldl(seq , z, L) (5)

and
treeReduceT(apply ,⊕, part(L)) = reducel(⊕, L) (6)

respectively for all lists L, partitionings part , and instantiations apply of apply!.

The following two propositions state necessary and sufficient conditions for the
treeAggregate and treeReduce combinators to have deterministic outcomes.
Proposition 1. Calls to treeAggregate(z, seq ,⊕, rdd) have deterministic outcomes iff
calls to aggregate(z, seq ,⊕, rdd) have deterministic outcomes.

Proposition 2. Calls to treeReduce(⊕, rdd) have deterministic outcomes iff calls to
reduce(⊕, rdd) have deterministic outcomes.

4.4 aggregateByKey and reduceByKey
We proceed by investigating conditions for the following combinators on pair RDDs:

1. aggregateByKey(z, seq ,⊕, prdd) for z :: γ, seq :: γ × β → γ, ⊕ :: γ × γ → γ,
and prdd :: PairRDD α β; and

2. reduceByKey(⊕, prdd) for ⊕ :: β × β → β and prdd :: PairRDD α β.

We define an auxiliary function filterkey that obtains a list of all values associated with
the given key from a list of pairs.
filterkey :: α→ [(α, β)]→ [β]
filterkey [] = []
filterkey k (k, v):xs = v:(filterkey k xs)
filterkey k (,):xs = filterkey k xs
Deterministic outcomes of calls to aggregateByKey are now defined using the function
aggregateByKeyD as follows.

Definition 4. Calls to aggregateByKey(z, seq ,⊕, prdd) have deterministic outcomes if

lookup(k, aggregateByKeyD(z, seq ,⊕, part(L))) = foldl(z, seq , filterkey(k, L))

for all lists L of pairs, partitionings part , and keys k.

Finally, the following proposition states the conditions that need to hold for calls to
aggregateByKey to have deterministic outcomes.

Proposition 3. Calls to aggregateByKey(z, seq ,⊕, prdd) have deterministic outcomes
iff calls to aggregate(z, seq ,⊕, rdd) have deterministic outcomes.

We define when calls to reduceByKey have deterministic outcomes via reduceByKeyD.

Definition 5. Calls to reduceByKey(⊕, prdd) have deterministic outcomes if
lookup(k, reduceByKeyD(⊕, part(L))) = reducel(⊕, filterkey(k, L))

for all list L of pairs, partitioning part , and key k.

Proposition 4. Calls to reduceByKey(⊕, prdd) have deterministic outcomes iff calls to
reduce(⊕, rdd) have deterministic outcomes.

4.5 Discussion
Our conditions for deterministic outcomes are more general than it appears. In addition
to scalar data, such as integers, they are also applicable to RDDs containing non-scalar
data, such as lists or sets. In our extended set of case studies, we will prove deterministic
outcomes from a distributed Spark program using non-scalar data (Appendix B.3).

Corollary 1 gives necessary and sufficient conditions for calls to aggregate to have
deterministic outcomes. Instead of checking whether aggregate computes the same re-
sult on all possible partitionings on any list for given z, seq , and comb, the corol-
lary, instead, allows us to investigate properties for all elements of img(foldl(seq , z))×
img(foldl(seq , z)) and α × img(foldl(seq , z)). Our precise conditions reduce the need
of checking all partitionings to checking all elements of Cartesian products. It appears
that deterministic outcomes from calls to combinators can be verified automatically.
The problem, however, remains difficult for the following reasons:

(a) The domain img(foldl(seq , z)) can be infinite and in general not computable.
(b) Even if α and img(foldl(seq , z)) are computable, seq and⊕may not be computable.

Naı̈vely enumerating elements in α and img(foldl(seq , z)) would not work.
(c) Testing equality between elements of img(foldl(seq , z)) can be undecidable.

Given seq :: β × α → β, recall that img(foldl(seq , z)) is a subset of β. A sound but
incomplete way to avoid (a) in practice is to test the properties of⊕ on all elements of β
instead. If a counterexample is found for some elements of β, the counterexample may
not be valid in a real aggregate call because it may not belong to img(foldl(seq , z)).
In practical cases, the sets α and β are finite (such as machine integers) and equal-
ity between their elements is decidable. Even for such cases, checking if outcomes of
aggregate are deterministic is still difficult since seq and ⊕ might not terminate for
some input. In many real Spark programs, however, seq and⊕ are very simple and thus
computable (for instance, with only bounded loops or recursion). A semi-procedure to
test these conditions might work on such practical examples.

5 Case Studies

We evaluated advantages of our PURESPARK specification on several case studies. In
this section, we first analyze a Spark implementation of linear classification. Using
the treeAggregate specification and its criteria for deterministic outcomes, we construct
inputs yielding non-deterministic outcomes from the Spark implementation. Second, we
analyze an implementation of a standard scaler and find a non-deterministic behavior
there, too. Yet more case studies are provided in App. B.

5.1 Linear Classification
Linear classification is a well-known machine learning technique to classify data sets.
Fix a set of features. A data point is a vector of numerical feature values. A labeled data
point is a data point with a discrete label. Given a labeled data set, the classification
problem is to classify (new) unlabeled data points by the labeled data set. A particularly
useful subproblem is the binary classification problem. Consider, for instance, a data set
of vital signs of some population; each data point is labeled by the diagnosis of a disease
(positive or negative). The binary classification problem can be used to predict whether
a person has the particular disease. Linear classification solves the binary classification
problem by finding an optimal hyperplane to divide the labeled data points. After a
hyperplane is obtained, linear classification predicts an unlabeled data point by the half-
space containing the point. Logistic regression and linear Support Vector Machines
(SVMs) are linear classification algorithms.

Consider a data set {(#‰x i, yi) : 1 ≤ i ≤ n} of data points #‰x i ∈ Rd labeled by
yi ∈ {0, 1}. Linear classification can be expressed as a numerical optimization problem:

min
#‰w∈Rd

f(#‰w) with f(#‰w) = ξR(#‰w) +
1

n

n∑
i=1

L(#‰w; #‰x i, yi)

where ξ ≥ 0 is a regularization parameter, R(#‰w) is a regularizer, and L(#‰w; #‰x i, yi) is
a loss function. A vector #‰w corresponds to a hyperplane in the data point space. The
vector #‰wopt attaining the optimum hence classifies unlabeled data points with criteria
defined by the objective function f(#‰w). Logistic regression and linear SVM are but

two instances of the optimization problem with objective functions defined by different
regularizers and loss functions.

In the Spark machine learning library, the numerical optimization problem is solved
by gradient descent. Very roughly, gradient descent finds a local minimum of f(#‰w) by
“walking” in the opposite direction of the gradient of f(#‰w). The mean of subgradients
at data points is needed to compute the gradient of f(#‰w). The Spark machine learning
library invokes treeAggregate to compute the mean. Floating-point addition is used as
the comb parameter of the aggregate combinator. Since floating-point addition is not
associative, we expect to observe non-deterministic outcomes (Proposition 1).

Consider the following three labeled data points: −1020 labeled with 1, 600 labeled
with 0, and 1020 labeled with 1. We create a 20-partition RDD with an equal number of
the three labeled data points. The Spark machine learning library function LogisticRe-
gressionWithSGD.train is used to generate a logistic regression model to predict the data
points −1020, 600, and 1020 in each run. Among 49 runs, 19 of them classify the three
data points into two different classes: the two positive data points are always classified
in the same class, while the negative data point in the other. The other 30 runs, how-
ever, classify all three data points into the same class. We observe similar predictions
from SVMWithSGD.train with the same labeled data points. 37 out of 46 runs classify
the data points into two different classes; the other 9 runs classify them into one class.
Interestingly, the data points are always classified into two different classes by both lo-
gistic regression and linear SVM when the input RDD has only three partitions. As we
expected from our analysis of the function, non-deterministic outcomes were witnessed
in our Spark distributed environment.

5.2 Standard Scaler

Standardization of data sets is a common pre-processing step in machine learning. Many
machine learning algorithms tend to perform better when the training set is similar to
the standard normal distribution. In the Spark machine learning library, the class Stan-
dardScaler is provided to standardize data sets. The function StandardScaler.fit takes
an RDD of raw data and returns an instance of StandardScalerModel to transform data
points. Two transformations are available in StandardScalerModel. One standardizes
a data point by mean, and the other normalizes by variance of raw data. If data points
in raw data are transformed by mean, the transformed data points have the mean equal
to 0. Similarly, if they are transformed by variance, the transformed data points have
the variance 1.

The StandardScaler implementation uses treeAggregate to compute statistical in-
formation. It uses floating-point addition to combine means of raw data in different
partitions. As in the previous use case, since floating-point addition is not associative,
StandardScaler does not produce deterministic outcomes (Section 4.3). In our experi-
ment, we create a 100-partition RDD with values −1020, 600, 1020 of the same number
of occurrences. The mean of the data set is (−1020×n+600×n+1020×n)/(3n) = 200
where n is the number of occurrences of each value. The data point 200 should there-
fore be after standardization transformed to 0. In 50 runs on the same data set in our
distributed Spark platform, StandardScaler transforms 200 to a range of values from
−944 to 1142, validating our prediction of a non-deterministic outcome.

6 Related Work

MapReduce modeling and optimization. In the MapReduce (MR) computation, var-
ious cost and performance models have been proposed [26,17,15,32]. These models
estimate the execution time and resource requirements of MR jobs. Karloff et al. devel-
oped a formal computation model for MR [20] and showed how a variety of algorithms
can exploit the combination of sequential and parallel computation in MR. We are not
aware of a similar work in the context of Spark. To the best of our knowledge, our work
is the first to address the problem of formal, functional specification of Spark aggrega-
tion. Verifying the correctness of a MR program involves checking the commutativity
and associativity of the reduce function. Xu et al. propose various semantic criteria
to model commonly held assumptions on MR programs [29], including determinism,
partition isolation, commutativity, and associativity of map/reduce combinators. Their
empirical survey shows that these criteria are often overlooked by programmers and
violated in practice. A recent survey [28] has found that a large number of industrial
MR programs are, in fact, non-commutative. Recent work has proposed techniques for
checking commutativity of bounded reducers automatically [12]. Because it is non-
trivial to implement high-level algorithms using the MR framework, various approaches
to compute optimized MR implementations have been proposed [16,23,25]. Emoto et
al. [16] formalize the algebraic conditions using semiring homomorphism, under which
an efficient program based on the generate-test-aggregate programming model can be
specified in the MR framework. Given a monolithic reduce function, the work in [23]
tries to decompose reduce into partial aggregation functions (similar to seq and comb
in this paper) using program inversion techniques. MOLD [25] translates imperative
Java code into MR code by transforming imperative loops into fold combinators using
semantic-preserving program rewrite rules.
Numerical Stability under MapReduce. Several works try to scale up machine learn-
ing algorithms for large datasets using MapReduce [13,26]. To achieve numerically
stable results across multiple runs [5,27], for example, preventing overflow, underflow
and round-off errors due to finite-precision arithmetic, a variety of techniques are pro-
posed [27]: generalizing sequential numerical stability techniques to distributed set-
tings, shifting data values by constants, divide-and-conquer, etc. We showed that sim-
ulating machine learning algorithms using our specification enables early detection of
points of numerical instability.
Relational Query Optimization. Relational query optimization is an extensively re-
searched topic [11,19]: the goal is to obtain equivalent but more efficient query expres-
sions by exploiting the algebraic properties of the constituent operators, for instance,
join, select, together with statistics on relations and indices. For example, while inner
joins commute independent of data, left joins commute only in specific cases. Query
optimization for partitioned tables has received less attention [18,2]: because the key
relational operators are not partition-aware, most work has focused on necessary but
not sufficient conditions for query equivalence. In contrast, we investigate determinism
of Spark aggregate expressions, constructed using partition-aware seq and comb combi-
nators. We describe necessary and sufficient conditions under which these computations
yield deterministic results independent of the data partitions.

Deterministic Parallel Programming. In order to enable deterministic-by-default par-
allel programming [7,10,8,9,21], researchers have developed several programming ab-
stractions and logical specification languages to ensure that programs produce the same
output for the same input independent of thread scheduling. For example, Determinis-
tic Parallel Java [7,8] ensures exclusive writes to shared memory regions by means of
verified, user-provided annotations over memory regions. In contrast, deterministic out-
comes from Spark aggregation depend on algebraic properties like commutativity and
associativity of seq and comb functions and their interplay

7 Conclusion
In this paper, we give a Haskell specification for various Spark aggregate combinators.
We focus on aggregation of RDDs representing general sets, sets of pairs, and graphs.
Based on our specification, we derive necessary and sufficient conditions that guarantee
deterministic outcomes of the considered Spark aggregate combinators. We investigate
several case studies and use the conditions to predict non-deterministic outcomes. Our
executable specification can be used by developers for more detailed analysis and effi-
cient development of distributed Spark programs. We also believe that our specifications
are valuable resources for research communities to understand Spark better.

There are several future directions. The conditions for deterministic outcomes of
aggregate combinators could be used for: (i) creating fully mechanized proofs for prop-
erties about data-parallel programs; (ii) developing automatic techniques for detect-
ing non-deterministic outcomes of data-parallel programs; and (iii) synthesizing deter-
ministic concurrent programs from sequential specifications. We have formalized the
proofs of some crucial lemmas in Agda [4]. Using Scalaz [3], verified Haskell specifi-
cations can be translated to Spark programs to ensure determinism by construction.

References

1. Apache Spark, https://github.com/apache/spark
2. IBM DB2 Version 9.7. Partitioned Tables, https://ibm.biz/BdHyYR
3. The Scalaz project, https://github.com/scalaz
4. PURESPARK, https://github.com/guluchen/purespark
5. Bennett, J., Grout, R., Pebay, P., Roe, D., Thompson, D.: Numerically stable, single-pass,

parallel statistics algorithms. In: CLUSTER. pp. 1–8 (2009)
6. Bird, R.S.: An introduction to the theory of lists. In: the NATO Advanced Study Institute on

Logic of programming and calculi of discrete design. pp. 5–42. Springer (1987)
7. Bocchino, Jr., R.L., Adve, V.S., Dig, D., Adve, S.V., Heumann, S., Komuravelli, R., Overbey,

J., Simmons, P., Sung, H., Vakilian, M.: A type and effect system for deterministic parallel
Java. In: OOPSLA. pp. 97–116 (2009)

8. Bocchino, Jr., R.L., Heumann, S., Honarmand, N., Adve, S.V., Adve, V.S., Welc, A., Shpeis-
man, T.: Safe nondeterminism in a deterministic-by-default parallel language. SIGPLAN
Not. 46(1), 535–548 (2011)

9. Budimlic, Z., Burke, M.G., Cavé, V., Knobe, K., Lowney, G., Newton, R., Palsberg, J.,
Peixotto, D.M., Sarkar, V., Schlimbach, F., Tasirlar, S.: Concurrent collections. Scientific
Programming 18(3-4), 203–217 (2010)

10. Burnim, J., Sen, K.: Asserting and checking determinism for multithreaded programs. Com-
mun. ACM 53(6), 97–105 (2010)

11. Chaudhuri, S.: An overview of query optimization in relational systems. PODS ’98 (1998)

https://github.com/apache/spark
https://ibm.biz/BdHyYR
https://github.com/scalaz
https://github.com/guluchen/purespark

12. Chen, Y., Hong, C., Sinha, N., Wang, B.: Commutativity of reducers. In: Proc. of TACAS’15.
pp. 131–146. LNCS, Springer (2015)

13. Chu, C., Kim, S.K., Lin, Y., Yu, Y., Bradski, G.R., Ng, A.Y., Olukotun, K.: Map-Reduce for
machine learning on multicore. In: NIPS. pp. 281–288 (2006)

14. Dean, J., Ghemawat, S.: MapReduce: A flexible data processing tool. Commun. ACM 53(1),
72–77 (2010)

15. Dörre, J., Apel, S., Lengauer, C.: Modeling and optimizing MapReduce programs. Concur-
rency and Computation: Practice and Experience 27(7), 1734–1766 (2015)

16. Emoto, K., Fischer, S., Hu, Z.: Generate, test, and aggregate: A calculation-based framework
for systematic parallel programming with MapReduce. In: ESOP. pp. 254–273 (2012)

17. Herodotou, H., Babu, S.: Profiling, what-if analysis, and cost-based optimization of MapRe-
duce programs. Proceedings of the VLDB Endowment 4(11), 1111–1122 (2011)

18. Herodotou, H., Borisov, N., Babu, S.: Query optimization techniques for partitioned tables.
pp. 49–60. SIGMOD ’11

19. Ioannidis, Y.E.: Query optimization. ACM Comput. Surv. 28(1), 121–123 (1996)
20. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In: SODA.

pp. 938–948 (2010)
21. Leijen, D., Fähndrich, M., Burckhardt, S.: Prettier concurrency: Purely functional concurrent

revisions. In: Haskell. pp. 83–94 (2011)
22. Leith, D., Clifford, P.: Convergence of distributed learning algorithms for optimal wireless

channel allocation. In: IEEE Conference on Decision and Control. pp. 2980–2985 (2006)
23. Liu, C., Zhang, J., Zhou, H., McDirmid, S., Guo, Z., Moscibroda, T.: Automating distributed

partial aggregation. In: SoCC. pp. 1:1–1:12 (2014)
24. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.:

Pregel: A system for large-scale graph processing. In: ACM SIGMOD. pp. 135–146 (2010)
25. Radoi, C., Fink, S.J., Rabbah, R.M., Sridharan, M.: Translating imperative code to MapRe-

duce. In: OOPSLA. pp. 909–927 (2014)
26. Sakr, S., Liu, A., Fayoumi, A.G.: The family of MapReduce and large-scale data processing

systems. ACM Comput. Surv. 46(1), 11:1–11:44 (2013)
27. Tian, Y., Tatikonda, S., Reinwald, B.: Scalable and numerically stable descriptive statistics

in SystemML. In: ICDE. pp. 1351–1359 (2012)
28. Xiao, T., Zhang, J., Zhou, H., Guo, Z., McDirmid, S., Lin, W., Chen, W., Zhou, L.: Nonde-

terminism in MapReduce considered harmful? an empirical study on non-commutative ag-
gregators in MapReduce programs. In: Companion Proceedings of ICSE. pp. 44–53 (2014)

29. Xu, Z., Hirzel, M., Rothermel, G.: Semantic characterization of MapReduce workloads. In:
IISWC. pp. 87–97 (2013)

30. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin, M.J.,
Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In: NSDI. pp. 15–28 (2012)

31. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J.,
Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I.: Apache
Spark: A unified engine for big data processing. Commun. ACM 59(11), 56–65 (Oct 2016)

32. Zhang, Z., Cherkasova, L., Verma, A., Loo, B.T.: Performance modeling and optimization
of deadline-driven Pig programs. ACM Trans. Auton. Adapt. Syst. 8(3), 14:1–14:28 (2013)

A Graph RDDs

Using RDDs, Spark provides a framework to analyze graphs distributively. In the Spark
GraphX library, each vertex in a graph is designated by a VertexId, and associated with
a vertex attribute. Each edge on the other hand is represented by VertexIds of its source
and destination vertices. An edge is also associated with an edge attribute.
type VertexId = Int
type VertexRDD α = PairRDD VertexId α
type EdgeRDD β = RDD (VertexId, VertexId, β)
data GraphRDD α β = Graph { vertexRdd :: VertexRDD α, edgeRdd :: EdgeRDD β }
Let graphRdd be a graph RDD. Its vertex RDD (vertexRdd graphRdd) contains pairs
of vertex identifiers and attributes. Different from conventional pair RDDs, each vertex
identifier can appear at most once in the vertex RDD since a vertex is associated with
exactly one attribute. If, for instance, two pairs with the same vertex identifier are gen-
erated during computation, their associated attributes must be merged to obtain a valid
vertex RDD. The edge RDD (edgeRdd graphRdd) consists of triples of source and des-
tination vertex identifiers, and edge attributes. Multi-edged directed graphs are allowed.
In a graph RDD, the vertex and edge RDDs need to be consistent. That is, the source
and destination vertex identifiers of any edge from the edge RDD must appear in the
vertex RDD of the graph RDD.

The Spark GraphX library provides aggregate combinators for graph RDDs. We be-
gin with an informal description of a slightly more general aggregateMessagesWith-
ActiveSet combinator (Algorithm 1). The combinator takes functions sendMsg and
mergeMsg, and a list active of vertices as its parameters. The list active determines
active edges, that is, edges with source or destination vertex identifiers in active. For
each active edge, the function aggregateMessagesWithActiveSet invokes sendMsg to
send messages to its vertices. Messages sent to each vertex are merged by mergeMsg.
Since a vertex is associated with at most one message after merging, the result is a valid
vertex RDD.

foreach active edge e do
call sendMsg on e to send messages to vertices of e;

end
foreach vertex v receiving messages do

call mergeMsg to merge all messages sent to v;
end
return a vertex RDD with merged messages;

Algorithm 1: aggregateMessagesWithActiveSet
Formally, the function sendMsg accepts source and destination vertex identifiers,

attributes of the vertices, and the edge attribute of an edge as inputs. It sends messages
to the source or destination vertex, both, or none. In our specification, lookup is used to
obtain vertex attributes from a vertex RDD. We generate a pair RDD of vertex identifiers
and messages by invoking sendMsg on every active edge. The messages associated with
the same vertex are then merged by applying reduceByKey on the pair RDD. The re-
sultant vertex RDD contains merged messages as vertex attributes. We call it a message
RDD for clarity. Note that if a vertex from the input graph RDD does not receive any
message, it is not present in the output message RDD. The combinator aggregateMes-
sages in the Spark GraphX library is defined by aggregateMessagesWithActiveSet. It

invokes aggregateMessagesWithActiveSet by passing the list of all vertex identifiers as
the active list. The combinator effectively applies sendMsg to every edge in a graph
RDD.

aggregateMessagesWithActiveSet ::
(VertexId→ α→ VertexId→ α→ β → [(VertexId, γ)])
→ (γ → γ → γ)→ [VertexId]→ GraphRDD α β → VertexRDD γ

aggregateMessagesWithActiveSet sendMsg mergeMsg active graphRdd =
let isActive (srcId, dstId,) = srcId ‘elem‘ active || dstId ‘elem‘ active

vAttrs = concat (vertexRdd graphRdd)
f edge = if isActive edge then

let (srcId, dstId, edgeAttr) = edge
srcAttr = fromJust (lookup srcId vAttrs)
dstAttr = fromJust (lookup dstId vAttrs)

in sendMsg srcId srcAttr dstId dstAttr edgeAttr
else []

pairRdd = map (concatMap f) (edgeRdd graphRdd)
in reduceByKey mergeMsg pairRdd

aggregateMessages :: (VertexId→ α→ VertexId→ α→ β → [(VertexId, γ)])
→ (γ → γ → γ)→ GraphRDD α β → VertexRDD γ

aggregateMessages sendMsg mergeMsg graphRdd =
let vertices = concatMap (map fst) (vertexRdd graphRdd)
in aggregateMessagesWithActiveSet sendMsg mergeMsg vertices graphRdd

Many graph algorithms perform fixed point computation. The Spark GraphX library
hence provides a Pregel-like function to apply aggregateMessages on a graph RDD
repetitively [24]. The Spark pregel function takes four input parameters initMsg, vprog,
sendMsg, and mergeMsg (Algorithm 2). At initialization, it updates vertex attributes of
the graph RDD by invoking vprog with the initial message initMsg. The pregel function
then calls aggregateMessages to obtain a message RDD. If a vertex receives a message,
its attribute is updated by vprog with the message. After updating vertex attributes,
pregel obtains a new message RDD by invoking aggregateMessagesWithActiveSet with
the active list equal to message-receiving vertices. Subsequently, only edges connecting
to such vertices can send new messages.

foreach vertex v in G do
call vprog on v with initMsg to obtain its initial vertex attribute;

end
msgRdd← call aggregateMessages on G;
while msgRdd is not empty do

foreach vertex v with message m in msgRdd do
call vprog on v with m to update its vertex attribute on G;

end
msgRdd← call aggregateMessagesWithActiveSet with active equal to the vertices

in msgRdd;
end
return G;

Algorithm 2: pregel

We use several auxiliary functions to specify the Spark pregel function. Given a
function computing an attribute from a vertex identifier and an attribute, the auxiliary
function mapVertexRDD applies the function to every vertex in a vertex RDD and ob-
tains another vertex RDD with new attributes. The mapVertexRDD function is used in
mapVertices to update vertex attributes in graph RDDs. Moreover, recall that aggre-
gateMessagesWithActiveSet returns a message RDD. The auxiliary function joinGraph
updates a graph RDD with messages in a message RDD. For each vertex in the graph
RDD, its attribute is joined with the message in the message RDD. If there is no mes-
sage, the vertex attribute is left unchanged. The pregel function sets up the initial graph
RDD by mapVertices. It then computes the initial message RDD by aggregateMes-
sages. In each iteration, a new graph RDD is obtained by joining the graph RDD with
a message RDD. aggregateMessagesWithActiveSet is then invoked to compute a new
message RDD for the next iteration. The pregel function terminates when no more mes-
sage is sent.

mapVertexRDD :: (VertexId→ α→ β)→ VertexRDD α→ VertexRDD β
mapVertexRDD f vRdd = map (map (λ(i, attr)→ (i, f i attr))) vRdd

mapVertices :: (VertexId→ α→ γ)→ GraphRDD α β → GraphRDD γ β
mapVertices updater gRdd = Graph {

vertexRdd = mapVertexRDD updater (vertexRdd gRdd),
edgeRdd = edgeRdd gRdd }

joinGraph :: (VertexId→ α→ γ → α)→ GraphRDD α β
→ VertexRDD γ → GraphRDD α β

joinGraph joiner gRdd msgRdd = let assoc = concat msgRdd
updt i attr = case lookup i assoc of Just v→ joiner i attr v

Nothing→ attr
in mapVertices updt gRdd

pregel :: γ → (VertexId→ α→ γ → α)→
(VertexId→ α→ VertexId→ α→ β → [(VertexId, γ)])
→ (γ → γ → γ)→ GraphRDD α β → GraphRDD α β

pregel initMsg vprog sendMsg mergeMsg graphRdd =
let initG = let init f i attr = vprog i attr initMsg

in mapVertices init f graphRdd
initMsgRdd = aggregateMessages sendMsg mergeMsg initG
loop curG [] = curG
loop curG msgRdd = let newG = joinGraph vprog curG msgRdd

active = concatMap (map fst) msgRdd
msgRdd’ = aggregateMessagesWithActiveSet

sendMsg mergeMsg active newG
in loop newG msgRdd’

in loop initG initMsgRdd

A.1 Deterministic Aggregation in Graph Rdds

In this section, we explore necessary and sufficient conditions for aggregation in graph
RDDs. In particular, we investigate deterministic outcomes of calls to the function

aggregateMessages(send ,⊕, graphRdd) for send :: VertexID × α × VertexID ×
α × β → [(VertexID , γ)], ⊕ :: γ × γ → γ, and graphRdd :: GraphRDD α β. We
define deterministic outcomes first.

Definition 6. Calls to the function aggregateMessages(send,⊕,graphRdd) have deter-
ministic outcomes if for any two graph RDD representations of the same graph

graphRdd1, graphRdd2 :: GraphRDD α β,

we have for all vertex identifiers v :: VertexID ,

lookup(v, aggregateMessages(send ,⊕, graphRdd1)) =

lookup(v, aggregateMessages(send ,⊕, graphRdd2)).

The following proposition gives a sufficient condition for aggregateMessages to
have deterministic outcomes.

Proposition 5. It holds that if calls to the function reduceByKey(⊕, rdd) have deter-
ministic outcomes, then calls to the function aggregateMessages(send ,⊕, graphRdd)
also have deterministic outcomes.

B Extended Set of Case Studies

This section of the appendix gives yet more case studies that we explored when analyz-
ing Spark’s machine learning and graph libraries.

B.1 Vertex Coloring

Let Γ = {1, ..., k} denote the set of k colors. Given an undirected graph G = (V,E),
a k-coloring of G is a map C : V → Γ such that C(v) 6= C(u) for any {v, u} ∈ E.
In this case study, we will implement the Communication-Free Learning (CFL) algo-
rithm [22] to find a k-coloring using the Spark GraphX library. Let 0 < β < 1. The
algorithm computes a k-coloring by iterations. We say a vertex v is inactive if all ver-
tices adjacent to v have colors different from the color of v. Otherwise, v is active.
At the n-th iteration, the CFL algorithm randomly chooses a color Cn(v) ∈ Γ by the
color distribution Pn(v, •) of v. The color distribution Pn(v, •) is defined as follows.
For n = 0, P0(v, c) = 1/k for all v ∈ V and c ∈ Γ . Each vertex hence chooses one of
the k colors uniformly at random. For n > 0, let c = Cn−1(v) be the color of v in the
previous iteration.

– If v is inactive, define Pn(v, c) = 1 and Pn(v, d) = 0 for d 6= c. Thus v does not
change its color.

– Otherwise, define

Pn(v, d) =

{
(1− β) · Pn−1(v, c) if d = c

(1− β) · Pn−1(v, d) + β/(k − 1) if d 6= c

Thus v is more likely to choose a color different from c.

Observe that Cn stabilizes if and only if it is a k-coloring.
We implement the CFL algorithm using pregel in PURESPARK. For each vertex v,

its attribute consists of the vertex colorCn(v), the color distribution Pn(v, •), the vertex
state (active or not), and a random number generator. As in Section B.3, an edge (u, v,
) with u ≥ v in an edge RDD represents {u, v} ∈ E. Given a graph RDD graphRdd,

we construct its base graph baseG with initial vertex attributes.

initDist = map (λ → 1.0 / fromIntegral k) [1..k]

baseG = mapVertices (λi → let (c, g) = randomR (1, k) (mkStdGen i)
in (c, initDist, True, g)) graphRdd

where initDist is the uniform distribution over k colors.
Consider the following sendMsg function:

sendMsg srcId (srcColor, , srcActive,) dstId (dstColor, , dstActive,) =
if srcColor == dstColor then [(srcId, True), (dstId, True)]
else (if srcActive then [(srcId, False)] else []) ++

(if dstActive then [(dstId, False)] else [])
mergeMsg msg1 msg2 = msg1 || msg2

If the source and destination vertices of an edge have the same color, sendMsg
sends True to both vertices to update vertex attributes. If they have different colors and
the source vertex is active, False is sent to the source vertex. Similarly, False is sent to
the destination vertex if the vertex is active. mergeMsg is the disjunction of messages.
After applying aggregateMessagesWithActiveSet with sendMsg and mergeMsg, a ver-
tex may receive a Boolean message. If a vertex receives True, it becomes active since
one of its neighbors has the same color. Otherwise, the vertex becomes inactive.

We use vprog to update vertex attributes. For each vertex receiving a message, its
vertex state, color, and color distribution are updated according to the CFL algorithm.
The auxiliary function sampleColor chooses a color randomly by the color distribu-
tion. The helper function in vprog computes the color distribution Pn(v, •) for the next
iteration.

sampleColor dist p = let f (color, mass) weight =
(if m < p then succ color else color, m)

where m = mass + weight
in fst (foldl f (1, 0.0) dist)

vprog (c, dist, , g) active = let helper (i, res) weight =
let decay = weight ∗ (1 − beta)

d = decay + (if c == i then 0 else beta / fromIntegral (numColors−1))
e = if c == i then 1.0 else 0.0

in (succ i, if active then res ++ [d] else res ++ [e])
dist’ = snd (foldl helper (1, []) dist)
(p, g’) = random g
c’ = if active then sampleColor dist’ p else c

in (c’, dist’, active, g’)

Finally, we invoke pregel to compute a k-coloring:

coloring = pregel True vprog sendMsg mergeMsg baseG

We test our executable Haskell specification on a typical Linux server. Since our Spark
specification PURESPARK is faithful to Spark APIs, we realize it in the GraphX library
with little manual effort. Our implementation works as intended on the distributed Spark
platform.

B.2 Connected Components

The Spark GraphX library implements a connected component algorithm for direct
graphs. The documentation however does not explain what connected components are
in directed graphs. We will find out what the implementation does here. Consider the
following PURESPARK specification extracted from the Spark implementation:

connectedComponent graphRdd =
let baseG = mapVertices (λi → i) graphRdd

initMsg = maxBound :: Int
sendMsg src srcA dst dstA =

if srcA < dstA then [(dst, srcA)]
else if dstA < srcA then [(src, dstA)]
else []

vprog attr msg = min attr msg
in pregel initMsg vprog sendMsg min baseG

Given a graph RDD graphRdd, its base graph baseG is obtained by setting the at-
tribute of a vertex to the identifier of the vertex. sendMsg compares the attributes of the
source and destination vertices of an edge. The smaller attribute is sent to the vertex
with the larger attribute. If both attributes are equal, no message is sent. If a number of
messages are sent to a vertex, only the minimal message remains after applying aggre-
gateMessagesWithActiveSet with sendMsg and min. When a vertex receives a message,
its attribute is set to the minimum of its attribute and the message.

Consider a graph G = (V,E) with E ⊆ V × V . We use attr(v) for the attribute
of the vertex v ∈ V . Two vertices u and v are linked if (u, v) ∈ E or (v, u) ∈ E.
Using our specification of pregel, it is not hard to see that the PURESPARK specifica-
tion implements Algorithm 3. Note that the two for-each loops essentially propagate
minimal attributes to linked vertices. When the set active is empty, the attributes of
every linked vertices are equal and the algorithm terminates. We say two vertices u
and v are connected if there are w0 = u,w1, . . . , wk = v such that wi and wi+1 are
linked for 0 ≤ i < k. When connectedComponent terminates, connected vertices have
the same attribute equal to the minimal vertex identifier among them. Hence the Spark
implementation returns a graph RDD whose vertex attributes are the minimal vertex
identifiers of connected vertices.

One can informally reason that the PURESPARK connected component specification
has deterministic outcomes. Note that (VertexId, min) is a commutative semigroup. This
allows us to derive a similar proposition for aggregateMessagesWithActiveSet. The
calls to aggregateMessages and aggregateMessagesWithActiveSet in pregel therefore
have deterministic outcomes (Proposition 5). Examining the vprog in our connected
component specification, the functions mapVertices and joinGraph also have determi-
nistic outcomes. All potential sources of non-determinism in pregel have deterministic

attr(v)← the vertix identifier of v;
active ← V ;
while active 6= ∅ do

active ′← ∅;
foreach v ∈ active do

if attr(u) < attr(v) for some u linked with v then
send attr(u) to v and add v to active ′

if attr(v) < attr(u) for some u linked with v then
send attr(v) to u and add u to active ′

end
foreach v ∈ active ′ do

attr(v)← the minimal attribute sent to v
end
active ← active ′;

end
Algorithm 3: Connected Components

outcomes. The connected component specification consequently has deterministic out-
comes. Experiments in a distributed Spark environment confirm our reasoning.

B.3 Triangle Count

LetG = (V,E) be an undirected graph without self-loops or multiple edges. For u, v ∈
V , {u, v} ∈ E denotes that u and v are adjacent. A triangle inG is formed by u, v, w ∈
V such that {u, v}, {u,w}, {v, w} ∈ E. Counting the number of triangles is important
to, for example, network analysis. The Spark GraphX library implements the triangle
counting algorithm using aggregateMessages.

In the GraphX implementation, an undirected graph is represented by a graph RDD
where the source vertex identifier of every edge is greater than its destination vertex
identifier. An edge {u, v} ∈ E with u > v is thus represented by (u, v,) in an edge
RDD. Below is the PURESPARK specification extracted from the Spark GraphX imple-
mentation.
sendMsg src dst = [(dst, singleton src), (src, singleton dst)]
adjacentVRdd = aggregateMessages sendMsg (union) graphRdd

newGRdd = let adjacents = concat adjacentVRdd
updt v = case lookup v adjacents of

Just adj→ delete v adj
Nothing→ empty

in mapVertices updt graphRdd

sendMsg2 src srcA dst dstA =
let num = size (intersection srcA dstA)
in [(dst, num),(src,num)]

sumTriangles = aggregateMessages sendMsg2 (+) newGRdd

triangleCount = mapVertexRDD (λ y→ quot y 2) sumTriangles

For each edge {u, v} ∈ E, sendMsg sends {u} and {v} to vertices v and u re-
spectively. Multiple messages to a vertex are merged by union. After applying aggre-
gateMessages with sendMsg and union, adjacentVRdd is a vertex RDD where the at-
tribute of the vertex v is {u : {u, v} ∈ E}.

The implementation updates vertex attributes of the input graph to obtain newGRdd.
If the setA of vertices adjacent to v is not empty, the attribute of v is updated toA\{v}.
If v does not have any adjacent vertices, its attribute is set to the empty set. Hence the
attribute of a vertex in newGRdd contains its adjacent vertices but not itself. Recall that
we assume the input graph does not have self-loops. A vertex cannot be adjacent to
itself. Removing a vertex from the set of its adjacent vertices is redundant.

For each edge {u, v} ∈ E in newGRdd, sendMsg2 sends the message |U ∩ V | to u
and v where U and V are the sets of vertices adjacent to u and v respectively. Observe
that for every w ∈ U ∩ V , we have {w, u}, {w, v}, {u, v} ∈ E. Let 4{u,v} denote
the number of triangles containing the edge {u, v}. 4{u,v} is sent to both u and v.
Messages are moreover merged by summation. Hence the attribute of each vertex v in
sumTriangles is

∑
{u,v}∈E4{u,v}.

Now consider a vertex v in a triangle of u, v, w. The triangle is counted in both
4{u,v} and 4{w,v}. Since a triangle is always counted twice, the attribute given as
1
2

∑
{u,v}∈E4{u,v} of vertex v in triangleCount is the the number of triangles con-

taining v. Both calls to aggregateMessages have deterministic outcomes because the
algebras (Set, (union)) and (Int, (+)) are commutative semigroups (Propositions 4, 5,
and Corollary 2).

B.4 In-Degrees

The Spark GraphX library implements several graph algorithms using aggregation. We
show how our specification helps to understand and analyze Spark programs utilizing
aggregate combinators.

Let G = (V,E) with E ⊆ V × V be a directed graph. We define the in-degree
of a vertex v ∈ V as |{(u, v) : (u, v) ∈ E}|. The GraphX library uses the function
aggregateMessages to compute in-degrees of vertices in a graph RDD. Consider the
following PURESPARK specification for the GraphX implementation:

inDegrees graphRdd =
let sendMsg dst = [(dst, 1)]
in aggregateMessages sendMsg (+) graphRdd

By our specification, aggregateMessages invokes sendMsg on every edge in graphRdd.
The sendMsg function sends the message 1 to the destination vertex of an edge. If
several messages are sent to a vertex, they are summed up. Hence inDegree returns a
vertex RDD where each vertex has the number of its incoming edges as the attribute.
They are in-degrees of vertices in graphRdd. The call to aggregateMessages has a
deterministic outcome because (Int, (+)) is a commutative semigroup (Propositions 4, 5,
and Corollary 2).

C Missing Proofs

We start with proving the following auxiliary lemma.

Lemma 4.
foldl(f, z, p1 ++ p2) = foldl(f, foldl(f, z, p1), p2) (7)

Proof. By induction on the length of p1.

– for p1 = []:

foldl(f, foldl(f, z, []), p2) = foldl(f, z, p2) (def. of foldl)
= foldl(f, z, [] ++ p2) (def. of ++)

– suppose the lemma holds for all p1 of length n. Now consider the list x : p1. It follows that

foldl(f, z, x : p1 ++ p2) = foldl(f, f(z, x), p1 ++ p2) (def. of foldl)
= foldl(f, foldl(f, f(z, x), p1), p2) (IH)
= foldl(f, foldl(f, z, x : p1), p2) (def. of foldl) ut

In the following we use the following function:

aggregateList part z seq comb xs = aggregateD z seq comb (part xs)

Lemma 5. The following are necessary (though not sufficient) conditions for a call aggregate(z, seq ,⊕, part(L)) to be determi-
nistic:

1. z is the identity of ⊕ on γ = img(foldl(seq , z)),
2. ⊕ is closed on γ,
3. ⊕ is commutative on γ, and
4. ⊕ is associative on γ.

Proof. 1. We assume that aggregate(z, seq ,⊕, part(L)) is deterministic and show that z is both the left and the right identity of
⊕ on γ. First, assume the following partitioning: part1(L) = [L]. From the assumption that the aggregate is deterministic, it
follows that

〈L〉 = aggregateList(part1, z, seq ,⊕, L)
= foldl(⊕, z, [〈L〉]) (def. of aggregateList)
= foldl(⊕, z ⊕ 〈L〉, []) (def. of foldl)
= z ⊕ 〈L〉 (def. of foldl)

Therefore, z is the left identity of ⊕ on γ.
Second, assume the following partitioning: part2(L) = [L, []]. From the assumption that the aggregate is deterministic, it
follows that

〈L〉 = aggregateList(part2, z, seq ,⊕, L)
= foldl(⊕, z, [〈L〉, 〈[]〉]) (def. of aggregateList)
= foldl(⊕, z, [〈L〉, z]) (def. of 〈·〉 and foldl)
= foldl(⊕, z ⊕ 〈L〉, [z]) (def. of foldl)
= foldl(⊕, 〈L〉, [z]) (z is the left id. of ⊕)
= foldl(⊕, 〈L〉 ⊕ z, []) (def. of foldl)
= 〈L〉 ⊕ z (def. of foldl)

Therefore, z is also the right identity of ⊕ on γ.

2. We assume that aggregate(z, seq ,⊕, rdd(L)) is deterministic and show that ⊕ is closed on γ. First, we assume that L =
p1 ++ p2 and consider the following partitioning: part(p1 ++ p2) = [p1, p2]. From the assumption that the aggregate is
deterministic, it follows that

〈p1 ++ p2〉 = aggregateList(part , z, seq ,⊕, L)
= foldl(⊕, z, [〈p1〉, 〈p2〉]) (def. of aggregateList)
= foldl(⊕, z ⊕ 〈p1〉, [〈p2〉]) (def. of foldl)
= foldl(⊕, 〈p1〉, [〈p2〉]) (z is the id. of ⊕)
= foldl(⊕, 〈p1〉 ⊕ 〈p2〉, []) (def. of foldl)
= 〈p1〉 ⊕ 〈p2〉 (def. of foldl)

Therefore ⊕ is closed on γ.
3. We assume that aggregate(z, seq ,⊕, rdd(L)) is deterministic and show that ⊕ is commutative on γ. First, we assume that
L = p1 ++ p2 and consider the following two partitionings: part1(p1 ++ p2) = [p1, p2] and part2(p1 ++ p2) = [p2, p1]). From
the assumption that the aggregate is deterministic, it follows that

aggregateList(part1, z, seq ,⊕, L) = aggregateList(part2, z, seq ,⊕, L)
⇐⇒ foldl(⊕, z, [〈p1〉, 〈p2〉]) = foldl(⊕, z, [〈p2〉, 〈p1〉]) (def. of aggregateList)
⇐⇒ foldl(⊕, z ⊕ 〈p1〉, [〈p2〉]) = foldl(⊕, z ⊕ 〈p2〉, [〈p1〉]) (def. of foldl)
⇐⇒ foldl(⊕, 〈p1〉, [〈p2〉]) = foldl(⊕, 〈p2〉, [〈p1〉]) (z is the id. of ⊕)
⇐⇒ foldl(⊕, 〈p1〉 ⊕ 〈p2〉, []) = foldl(⊕, 〈p2〉 ⊕ 〈p1〉, []) (def. of foldl)
⇐⇒ 〈p1〉 ⊕ 〈p2〉 = 〈p2〉 ⊕ 〈p1〉) (def. of foldl)

Therefore, ⊕ is commutative on γ.
4. We assume that aggregate(z, seq ,⊕, rdd(L)) is deterministic and show that ⊕ is associative on γ. First, we assume that
L = p1++p2++p3 and consider the following two partitionings: part1(p1++p2++p3) = [p1, p2, p3] and part2(p1++p2++p3) =
[p2, p3, p1]). From the assumption that the aggregate is deterministic, it follows that

aggregateList(part1, z, seq ,⊕, L) = aggregateList(part2, z, seq ,⊕, L)
⇐⇒ foldl(⊕, z, [〈p1〉, 〈p2〉, 〈p3〉]) = foldl(⊕, z, [〈p2〉, 〈p3〉, 〈p1〉]) (def. of aggregateList)
⇐⇒ foldl(⊕, z ⊕ 〈p1〉, [〈p2〉, 〈p3〉]) = foldl(⊕, z ⊕ 〈p2〉, [〈p3〉, 〈p1〉]) (def. of foldl)
⇐⇒ foldl(⊕, 〈p1〉, [〈p2〉, 〈p3〉]) = foldl(⊕, 〈p2〉, [〈p3〉, 〈p1〉]) (z is the id. of ⊕)
⇐⇒ foldl(⊕, 〈p1〉 ⊕ 〈p2〉, [〈p3〉]) = foldl(⊕, 〈p2〉 ⊕ 〈p3〉, [〈p1〉]) (def. of foldl)
⇐⇒ foldl(⊕, (〈p1〉 ⊕ 〈p2〉)⊕ 〈p3〉, []) = foldl(⊕, (〈p2〉 ⊕ 〈p3〉)⊕ 〈p1〉, []) (def. of foldl)
⇐⇒ (〈p1〉 ⊕ 〈p2〉)⊕ 〈p3〉 = (〈p2〉 ⊕ 〈p3〉)⊕ 〈p1〉 (def. of foldl)
⇐⇒ (〈p1〉 ⊕ 〈p2〉)⊕ 〈p3〉 = 〈p1〉 ⊕ (〈p2〉 ⊕ 〈p3〉) (comm. of ⊕)

Therefore, ⊕ is associative on γ. ut

Lemma 6. For all functions h : [A]→ B, the following are equivalent:

1. h is a list homomorphism to (B,�,⊥),
2. ∀xss ∈ [[A]] : foldl(�,⊥,map(h, xss)) = h(concat(xss)).

Proof. (1⇒ 2): By induction on the length of xss:
• for xss = []:

foldl(�,⊥,map(h, [])) = foldl(�,⊥, []) (def. of map)
= ⊥ (def. of foldl)
= h([]) (assumption)
= h(concat([])) (def. of concat)

• Consider the following induction hypothesis for xssn of the length n:

IH : foldl(�,⊥,map(h, xssn)) = h(concat(xssn)). (8)

For xssn ++ [xs] we proceed as follows:

foldl(�,⊥,map(h, xssn ++ [xs])) = foldl(�,⊥,map(h, xssn) ++ map(h, [xs])) (def. of map)
= foldl(�, foldl(�,⊥,map(h, xssn)),map(h, [xs])) (Lemma 4)
= foldl(�, foldl(�,⊥,map(h, xssn)), [h(xs)]) (def. of map)
= foldl(�, h(concat(xssn)), [h(xs)]) (IH)
= h(concat(xssn))� h(xs) (def. of foldl)
= h(concat(xssn) ++ xs) (assumption)
= h(concat(xssn ++ [xs])) (def. of concat)

(2⇒ 1): We prove that the two properties of a list homomorphism hold:
• From foldl(�,⊥,map(h, [])) = h(concat([])) it follows that h([]) = ⊥.
• To prove that h(xs ++ ys) = h(xs)� h(ys), first we consider the list xss = [xs]:

foldl(�,⊥,map(h, [xs])) = h(concat([xs]))

⇐⇒ foldl(�,⊥, [h(xs)]) = h(xs) (def. of map, def. of concat)
⇐⇒ foldl(�,⊥� h(xs), []) = h(xs) (def. of foldl)
⇐⇒ ⊥� h(xs) = h(xs) (def. of foldl) (9)

Then we consider the list xss = [xs, ys]:

foldl(�,⊥,map(h, [xs, ys])) = h(concat([xs, ys]))

⇐⇒ foldl(�,⊥, [h(xs), h(ys)]) = h(xs ++ ys) (def. of map, def. of concat)
⇐⇒ foldl(�,⊥� h(xs), [h(ys)]) = h(xs ++ ys) (def. of foldl)
⇐⇒ foldl(�, (⊥� h(xs))� h(ys), []) = h(xs ++ ys) (def. of foldl)
⇐⇒ (⊥� h(xs))� h(ys) = h(xs ++ ys) (def. of foldl)
⇐⇒ h(xs)� h(ys) = h(xs ++ ys) ((9)) ut

Lemma 1. Calls to aggregate(z, seq ,⊕, rdd) have deterministic outcomes iff:

1. (img(foldl(seq , z)),⊕, z) is a commutative monoid, and
2. for all lists p1, p2 :: [α], 〈p1 ++ p2〉 = 〈p1〉 ⊕ 〈p2〉 .

Proof. ⇒: (a) Proving 1: Follows from Lemma 5.
(b) Proving 2: consider the list xs ++ ys and its partitioning part(xs ++ ys) = [xs, ys].

aggregateList(part , z, seq ,⊕, xs ++ ys) = 〈xs ++ ys〉 (def. of det. aggregate)
⇐⇒ foldl(⊕, z, [〈xs〉, 〈ys〉]) = 〈xs ++ ys〉 (def. of aggregateList)
⇐⇒ foldl(⊕, z ⊕ 〈xs〉, [〈ys〉]) = 〈xs ++ ys〉 (def. of foldl)
⇐⇒ foldl(⊕, 〈xs〉, [〈ys〉]) = 〈xs ++ ys〉 (z is the id. of ⊕)
⇐⇒ foldl(⊕, 〈xs〉 ⊕ 〈ys〉, []) = 〈xs ++ ys〉 (def. of foldl)
⇐⇒ 〈xs〉 ⊕ 〈ys〉 = 〈xs ++ ys〉 (def. of foldl)

⇐: Consider an arbitrary partitioning part(L) of L and its permutation perm s.t. L = concat(perm(part(L))). From the defini-
tion of 〈·〉, it follows that 〈[]〉 = foldl(seq , z, []) = z, and, therefore, 〈·〉 is a list homomorphism to (img(foldl(seq , z)),⊕, z).
From Lemma 6 it follows that

foldl(⊕, z,map(〈·〉, perm(part(L)))) = 〈concat(perm(part(L)))〉
⇐⇒ foldl(⊕, z,map(〈·〉, perm(part(L)))) = 〈L〉 (def. of perm and part)
⇐⇒ aggregateList(perm ◦ part , z, seq ,⊕, L) = 〈L〉 (def. of aggregateList)

Because ⊕ is associative and commutative, it follows that aggregateList(permx ◦ part , z, seq ,⊕, L) = 〈L〉 for any permx.
Therefore, aggregate(z, seq ,⊕, rdd(L)) is deterministic. ut

Lemma 2. Let ⊕ be associative on γ = img(foldl(seq , z)) and z be the identity of ⊕ on γ. The following are equivalent:

1. for all lists p1, p2 :: [α],
〈p1 ++ p2〉 = 〈p1〉 ⊕ 〈p2〉, (2)

2. for all elements d :: α and e :: γ,
seq(e, d) = e⊕ seq(z, d). (3)

Proof. 1 =⇒ 2: This is a special case. We pick p1 such that 〈p1〉 = e and p2 = [d]. When we substitute into (2), we get

〈p1 ++ [d]〉 = e⊕ 〈[d]〉. (10)

For the left-hand side, according to Lemma 4, it holds that

〈p1 ++ [d]〉 = foldl(seq , z, p1 ++ [d]) = foldl(seq , foldl(seq , z, p1), [d]) = foldl(seq , 〈p1〉, [d]). (11)

After substitution, we get foldl(seq , e, [d]), which is (from the definition of foldl) equal to seq(e, d). For the right-hand side
of (10), we just notice that 〈[d]〉 = foldl(seq , z, [d]) = seq(z, d).

2 =⇒ 1: Set x = foldl(seq , z, p1) = 〈p1〉 and substitute into (2) to obtain a new target for proving:

〈p1 ++ p2〉 = 〈p1〉 ⊕ 〈p2〉
⇐⇒ foldl(seq , z, p1 ++ p2) = 〈p1〉 ⊕ 〈p2〉 (def. of 〈·〉)
⇐⇒ foldl(seq , foldl(seq , z, p1), p2) = 〈p1〉 ⊕ 〈p2〉 (Lemma 4)
⇐⇒ foldl(x, seq , p2) = x⊕ 〈p2〉 (subst. of x) (12)

We prove (12) using induction on the length n of p2.
n = 0: for p2 = [], we get to prove the following:

foldl(seq , x, []) = x⊕ foldl(seq , z, [])). (13)

From the definition of foldl, we get an equivalent formula

x = x⊕ z, (14)

which is true due to z being the identity of ⊕ on γ.
n = i+ 1: We assume (12) holds for p2 of length i, i.e.

IH : foldl(seq , x, pi) = x⊕ foldl(seq , z, pi) (15)

and prove that, for any h ∈ α,

foldl(seq , x, pi ++ [h]) = x⊕ foldl(seq , z, pi ++ [h]). (16)

We do it in the following way:

foldl(seq , x, pi ++ [h])

= foldl(seq , foldl(seq , x, pi), [h]) (Lemma 4)
= foldl(seq , seq(foldl(seq , x, pi), h), []) (def. of foldl)
= seq(foldl(seq , x, pi), h) (def. of foldl)
= foldl(seq , x, pi)⊕ seq(z, h) (appl. of (3))
= (x⊕ foldl(seq , z, pi))⊕ seq(z, h) (IH)
= x⊕ (foldl(z, seq , pi)⊕ seq(z, h)) (assoc. of ⊕)
= x⊕ seq(foldl(seq , z, pi), h) (appl. of (3))
= x⊕ foldl(seq , seq(foldl(seq , z, pi), h), []) (def. of foldl)
= x⊕ foldl(seq , foldl(seq , z, pi), [h])) (def. of foldl)
= x⊕ foldl(seq , z, pi ++ [h])) (Lemma 4) ut

Lemma 7.
reducel(f, xs) = reducel′(f, xs) (17)

where

reducel’ f xs = fromJust (foldl f’ Nothing xs)
where f’ x y = case x of

Nothing→ Just y
Just x’→ Just (f x’ y)

Proof. by induction on the length of xs:

1. for xs = [], both reduce and reducel are undefined.
2. for xs = [x]:

reducel(f, [x]) = foldl(f, x, []) = x

and

reducel′(f, [x]) = fromJust(foldl(f ′,Nothing, [x]) (def. of reducel′)
= fromJust(foldl(f ′, f ′(Nothing, x), []) (def. of foldl)
= fromJust(foldl(f ′, Just(x), []) (def. of f ′)
= fromJust(Just(x)) (def. of foldl)
= x (def. of fromJust)

3. assume the following induction hypothesis:

reducel(f, x : xs) = reducel′(f ′, x : xs) = R (18)

We now prove that the lemma holds for x : xs ++ [a]. First, we compute the result for reducel(f, x : xs ++ [a]):

reducel(f, x : xs ++ [a]) = foldl(f, x, xs ++ [a]) (def. of reducel)
= foldl(f, foldl(f, x, xs), [a]) (Lemma 4)
= foldl(f, reducel(f, x : xs), [a]) (def. of reducel)
= foldl(f,R, [a]) (IH)
= foldl(f, f(R, a), []) (def. of foldl)
= f(R, a) (def. of foldl)

We proceed by computing the result for reducel′(f, x : xs ++ [a]):

reducel′(f, x : xs ++ [a])

= fromJust(foldl(f ′,Nothing, x : xs ++ [a])) (def. of reducel′)
= fromJust(foldl(f ′, foldl(f ′,Nothing, x : xs), [a])) (Lemma 4)
= fromJust(foldl(f ′, f ′(foldl(f ′,Nothing, x : xs), a), [])) (def. of foldl)
= fromJust(f ′(foldl(f ′,Nothing, x : xs), a)) (def. of foldl)
〈f ′ is applied at least once on x : xs =⇒ the result of the nested foldl cannot be Nothing〉

= fromJust(Just(f(fromJust(foldl(f ′,Nothing, x : xs)), a)) (def. of f ′)
= f(fromJust(foldl(f ′,Nothing, x : xs)), a) (def. of fromJust)
= f(reducel′(f ′, x : xs), a) (def. of reducel′)
= f(R, a) (IH) ut

Lemma 3. Calls to reduce(⊕, rdd) have deterministic outcomes iff calls to aggregate(Nothing, seq ′,⊕′, rdd) have deterministic
outcomes, where seq ′ and ⊕′ are as follows:

seq’ x y = case x of
Nothing→ Just y
Just x’→ Just (x’ ⊕ y)

(⊕’) x y = case (x, y) of (Nothing, y’)→ y’
(x’, Nothing)→ x’
(Just x’, Just y’)→ Just (x’ ⊕ y’) .

Proof. We show that given the following definition of the function reduce′′,

reduce’’ :: (α→ α→ α)→ RDD α→ α
reduce’’ (⊕) rdd = fromJust (aggregate Nothing seq’ (⊕’) rdd) ,

it holds that reduce′′(⊕, rdd) = reduceD(⊕, rdd) for all ⊕ and rdd . In case rdd is a partitioning of an empty list, the result of
both reduce′ and reduce′′ is undefined. For a non-empty list:

reduce′′(⊕′, xs : xss)

= fromJust(aggregate(Nothing, seq ′,⊕′, xs : xss)) (def. of reduce′′)
= fromJust(foldl(⊕′,Nothing,map(λys . foldl(seq ′,Nothing, ys), xs : xss))) (def. of aggregate)
〈 from the assumption on partitionings, no element of xs : xss is empty 〉

= fromJust(foldl(⊕′,Nothing,map(λys . Just(fromJust(foldl(seq ′,Nothing, ys))), xs : xss))) (def. of fromJust)
= fromJust(foldl(⊕′,Nothing,map(λys . Just(reducel(⊕, ys)), xs : xss))) (Lemma 7)
= fromJust(foldl(⊕′,Nothing, Just(reducel(⊕, xs)) : map(λys . Just(reducel(⊕, ys)), xss))) (def. of map)
= fromJust(foldl(⊕′,Nothing⊕′ Just(reducel(⊕, xs)),map(λys . Just(reducel(⊕, ys)), xss))) (def. of foldl)
= fromJust(foldl(⊕′, Just(reducel(⊕, xs)),map(λys . Just(reducel(⊕, ys)), xss))) (def. of ⊕′)
= fromJust(Just(foldl(⊕, reducel(⊕, xs),map(λys . reducel(⊕, ys), xss)))) (def. of ⊕′)
= foldl(⊕, reducel(⊕, xs),map(λys . reducel(⊕, ys), xss)) (def. of fromJust)
= reducel(⊕, reducel(⊕, xs) : map(λys . reducel(⊕, ys), xss)) (def. of reducel)
= reducel(⊕,map(λys . reducel(⊕, ys), xs : xss)) (def. of map)

= reduceD(⊕, xs : xss) (def. of reduceD) ut

Corollary 2. Calls to reduce(⊕, rdd) have deterministic outcomes iff (α,⊕) is a commutative semigroup.

Proof. From Lemma 3, it follows that we can investigate the function aggregate(Nothing, seq ′,⊕′, rdd) instead of reduce(⊕, rdd).
From Corollary 1, we obtain that aggregate(Nothing, seq ′,⊕′, rdd) has deterministic outcome iff the following two conditions
hold:

1. (img(foldl(seq ′,Nothing)),⊕′,Nothing) is a commutative monoid,
2. ∀d ∈ α, e ∈ img(foldl(seq ′,Nothing)) : seq ′(e, d) = e⊕′ seq ′(Nothing, d).

We start with investigating condition 2:

– For the case e = Nothing:

seq ′(e, d) = e⊕′ seq ′(Nothing, d)

⇐⇒ seq ′(Nothing, d) = Nothing⊕′ seq ′(Nothing, d) (subst. of e = Nothing)
⇐⇒ Just(d) = Nothing⊕′ Just(d) (def. of seq ′)
⇐⇒ Just(d) = Just(d) (def. of ⊕′)

– For the case e = Just(x):

seq ′(e, d) = e⊕′ seq ′(Nothing, d)

⇐⇒ seq ′(Just(x), d) = Just(x)⊕′ seq ′(Nothing, d) (subst. of e = Just(x))
⇐⇒ Just(x⊕ d) = Just(x)⊕′ Just(d) (def. of seq ′)
⇐⇒ Just(x⊕ d) = Just(x⊕ d) (def. of ⊕′)

We can observe that the condition is a tautology. Therefore, the condition 1 is a sufficient and necessary condition for a call to
aggregate(Nothing, seq ′,⊕′, rdd) to have a deterministic outcome.

We proceed by investigating the conditions for (img(foldl(seq ′,Nothing)),⊕′,Nothing) to be a commutative monoid. First, we
observe that for ⊕ : α× α→ α, it holds that img(foldl(seq ′,Nothing)) = Maybe(α).

– Identity: From the definition, Nothing is the identity of ⊕′.
– Commutativity: From the definition, ⊕′ is commutative iff ⊕ is commutative.
– Associativity: Consider elements a, b, c ∈ Maybe(α). We explore when (a⊕′ b)⊕′ c = a⊕′ (b⊕′ c):
• If any member of {a, b, c} is Nothing, the condition holds because Nothing is the (left and right) identity of ⊕′.
• For a = Just(a′), b = Just(b′), and c = Just(c′), it holds that:

(Just(a)⊕′ Just(b))⊕′ Just(c) = Just(a)⊕′ (Just(b)⊕′ Just(c))

⇐⇒ Just(a⊕ b)⊕′ Just(c) = Just(a)⊕′ Just(b⊕ c) (def. of ⊕′)
⇐⇒ Just((a⊕ b)⊕ c) = Just(a⊕ (b⊕ c)) (def. of ⊕′)

Therefore, ⊕′ is associative iff ⊕ is associative.
– Closed: It is easy to observe that ⊕′ is closed on Maybe(α).

From the previous conditions, we infer that aggregate(Nothing, seq ′,⊕′, rdd) has deterministic outcome iff (α,⊕) is a com-
mutative semiring. ut

Proposition 1. Calls to treeAggregate(z, seq ,⊕, rdd) have deterministic outcomes iff calls to aggregate(z, seq ,⊕, rdd) have
deterministic outcomes.

Proof. ⇒: Consider the following function:

dividel :: [α]→ ([α], α, α, [α])
dividel x1:x2:xs = ([], x1, x2, xs) .

Obviously, dividel is one possible way how divide! can function. We further consider the following modification of apply:

applyl :: (β → β → β)→ [β]→ β
applyl comb [r] = r
applyl comb [r, r’] = comb r r’
applyl comb rs = let (ls’, l’, r’, rs’) = dividel rs in applyl comb (ls’ ++ [comb l’ r’] ++ rs’)

After inlinining dividel to applyl, we can modify it to obtain yet futher modification:

applyl’ :: (β → β → β)→ [β]→ β
applyl’ comb [r] = r
−− applyl’ comb [r, r’] = comb r r’
applyl’ comb r1:r2:rs = applyl’ comb ((comb r1 r2):rs)

Note that the case for a list of length 2 is reduntant now. Clearly it holds that applyl’(f, xs) = reducel(f, xs). If we substitute
reducel for apply in the definition of treeAggregate, and further use the property of a partitioning that it is never an empty list,
we obtain the definition of aggregate.

⇐: From Lemma 5, it follows that⊕ is associative and commutative. Therefore, any sequence of divide!-apply operations in apply
will yield the same outcome as if we consider the (deterministic) dividel. ut

Proposition 2. Calls to treeReduce(⊕, rdd) have deterministic outcomes iff calls to reduce(⊕, rdd) have deterministic outcomes.

Proof. Follows the same structure as the proof of Proposition 1. ut

When inferring conditions for a deterministic outcome of the call to aggregateByKey, we make use of the following auxiliary
function:

aggregateWithKey :: α→ γ → (γ → β → γ)→ (γ → γ → γ)→ PairRDD α β → γ
aggregateWithKey k z seq comb pairRdd =

let select p = key p == k
vrdd = filter (not . null)

(map ((map value) . (filter select)) pairRdd)
in aggregate z seq comb vrdd

We also use the following version of aggregateByKey with the partitioning given explicitly:

aggregateListByKey :: ([(α, β)]→ [[(α, β)]])→ γ → (γ→β→γ)
→ (γ→γ→γ)→ [(α, β)]→ PairRDD α γ

aggregateListByKey part z mergeComb mergeValue list = aggregateByKey z mergeComb mergeValue (part list)

Lemma 8. It holds that

lookUp(k, aggregateByKey(z, seq ,⊕, prdd)) = aggregateWithKey(k, z, seq ,⊕, prdd)),

where lookUp searches the first value with a given key in an RDD:

lookUp(k, xss) = headz(concat(map(map(value ◦ filterkey k), xss))),

and headz returns z when the input is empty.

Proof. To avoid too many parentheses, we use curried functions for the proof of this lemma. We need a number of additional
lemmas. The following property allows one to swap filterkey k and foldl (mergeBy (⊕)) []:

filterkey k ◦ foldl (mergeBy (⊕)) [] = foldl (mergeBy (⊕)) [] ◦ filterkey k. (19)

The next property says that, given a key k and a binary operator (�), filtering the list with k and performing foldl (mergeBy(�)) []
gives you a single value:

headz ◦map value ◦ foldl (mergeBy (�)) [] ◦ filterkey k = foldl� z ◦map value ◦ filterkey k, (20)

where headz returns z when the input is empty. Finally, in the equation below, given a RDD and any binary operator (�), the
LHS computes foldl (mergeBy (�)) []) on each partition, pick those with key k, and concatenates their values. The RHS filters the
values with key k, and computes foldl (�) z for each partition.

concat ◦map (map value ◦ filterkey k ◦ foldl (mergeBy (�)) [])
= map (foldl (�) z) ◦ filter (not ◦ null) ◦map (map value ◦ filterkey k). (21)

All the lemmas above can be proved by induction. The proof of this lemma follows:

lookUp k ◦ aggregateByKey z (⊗) (⊕)
= headz ◦ concat ◦map (map value ◦ filterkey k) ◦ repartition ◦

foldl (mergeBy (⊕)) [] ◦ concat ◦map (foldl (mergeBy (⊗)) []) ◦ perm (def. of aggregateByKey)
= headz ◦map value ◦ filterkey k ◦ foldl (mergeBy (⊕)) [] ◦

concat ◦map (foldl (mergeBy (⊗)) []) ◦ perm (naturality)
= headz ◦map value ◦ foldl (mergeBy (⊕)) [] ◦ filterkey k ◦

concat ◦map (foldl (mergeBy (⊗)) []) ◦ perm (by (19))
= foldl (⊕) z ◦map value ◦ filterkey k ◦ concat ◦map (foldl (mergeBy (⊗)) []) ◦ perm (by (20))
= foldl (⊕) z ◦ concat ◦map (map value ◦ filterkey k ◦ foldl (mergeBy (⊗) [])) ◦ perm (naturality)
= foldl (⊕) z ◦map (foldl (⊗) z) ◦ filter (not ◦ null) ◦map (map value ◦ filterkey k) ◦ perm (by (21))
= foldl (⊕) z ◦map (foldl (⊗) z) ◦ perm ◦ filter (not ◦ null) ◦map (map value ◦ filterkey k) (naturality)
= aggregateWithKey k z (⊗) (⊕) (def. of aggregateWithKey) ut

Proposition 3. Calls to aggregateByKey(z, seq ,⊕, prdd) have deterministic outcomes iff calls to aggregate(z, seq ,⊕, rdd) have
deterministic outcomes.

Proof. From Lemma 8, it follows that aggregateByKey(z, seq ,⊕, prdd) has deterministic outcome iff for all keys k ∈ α and
partitionings part :

aggregateWithKey(k, z, seq ,⊕, part(L)) = foldl(z, seq , filterkey(k, L)). (22)

From the defition of aggregateWithKey, we infer that this is equivalent to

aggregate(z, seq ,⊕, part(filterkey(k, L))) = foldl(z, seq , filterkey(k, L))

⇐⇒ aggregate(z, seq ,⊕, part(L′)) = foldl(z, seq , L′), (subst. L′ = filterkey(k, L))

which is the condition for aggregate(z, seq ,⊕, part(L′)) to have a deterministic outcome. ut

Consider the following function.

reduceWithKey :: α→ (β → β → β)→ PairRDD α β → β
reduceWithKey k mergeValue pairRdd =

let select p = key p == k
vrdd = filter (not . null)

(map ((map value) . (filter select)) pairRdd)
in reduce mergeValue vrdd

Lemma 9. It holds that

lookup(k, reduceByKey(⊕, prdd)) = reduceWithKey(k,⊕, prdd)).

Proof. Similar to that of Lemma 8. ut

Proposition 4. Calls to reduceByKey(⊕, prdd) have deterministic outcomes iff calls to reduce(⊕, rdd) have deterministic out-
comes.

Proof. Folows the same structure as the proof of Proposition 3. ut

Proposition 5. It holds that if calls to the function reduceByKey(⊕, rdd) have deterministic outcomes, then calls to the function
aggregateMessages(send ,⊕, graphRdd) also have deterministic outcomes.

Proof. When reduceByKey has deterministic outcome, then it holds (from definition) that for all vertices v ∈ VertexID , lists
L ∈ [α], and partitionings part :

lookup(v, reduceListWithKey(part ,⊕, L)) = reducel(⊕, filterkey(v, L)).

When applying lookup(v, aggregateMessages(send ,⊕, graphRdd(V,E))), the result will be the same as if the lookup is applied
to the last line of function aggregateMessagesWithActiveSet:

lookup(v, reduceByKey(⊕, pairRdd)) .

Since reduceByKey(⊕, pairRdd) has deterministic outcome, it follows that

lookup(v, reduceByKey(⊕, pairRdd)) = reducel(⊕, filterkey(v, pairRdd)). (23)

This is a sufficent condition to conclude that aggregateMessages(send ,⊕, graphRdd(V,E))) has a deterministic outcome. ut

	An Executable Sequential Specification for Spark Aggregation -3mm

