
Verifying Recursive Programs using
Intraprocedural Analyzers

Yu-Fang Chen1, Chiao Hsieh1,2, Ming-Hsien Tsai1, Bow-Yaw Wang1, and
Farn Wang2

1 Institute of Information Science, Academia Sinica, Taiwan
2 Graduate Institute of Electrical Engineering, National Taiwan University, Taiwan

Abstract. Recursion can complicate program analysis significantly.
Some program analyzers simply ignore recursion or even refuse to check
recursive programs. In this paper, we propose an algorithm that uses a
recursion-free program analyzer as a black box to check recursive pro-
grams. With extended program constructs for assumptions, assertions,
and nondeterministic values, our algorithm computes function summaries
from inductive invariants computed by the underlying program analyzer.
Such function summaries enable our algorithm to check recursive pro-
grams. We implement a prototype using the recursion-free program an-
alyzer CPAChecker and compare it with other program analyzers on
the benchmarks in the 2014 Competition on Software Verification.

1 Introduction

Program verification is a grand challenge with significant impact in computer
science. Its main difficulty is in great part due to complicated program features
such as concurrent execution, pointers, recursive function calls, and unbounded
basic data types [7]. Subsequently, it is extremely tedious to develop a verification
algorithm that handles all features. Researches on program verification typically
address some of these features and simplify others. Verification tools however are
required to support as many features as possible. Since implementation becomes
increasingly unmanageable with additional features, incorporating algorithms
for all features in verification tools can be a nightmare for developers.

One way to address the implementation problem is by reduction. If verify-
ing a new feature can be transformed to existing features, development efforts
can be significantly reduced. In this paper, we propose an algorithm to extend
intraprocedure (recursion-free) program analyzers to verify recursive programs.
Such analyzers supply an inductive invariant when a program is verified to be
correct and support program constructs such as assumptions, assertions, and
nondeterministic values. Our algorithm transforms any recursive program into
non-recursive ones and invokes an intraprocedure program analyzer to verify
properties about the generated non-recursive programs. The verification results
allow us to infer properties on the given recursive program.

Our algorithm proceeds by iterations. In each iteration, it transforms the
recursive program into a non-recursive program that under-approximates the

behaviors of the original and sends the under-approximation to an intraprocedure
program analyzer. If the analyzer verifies the under-approximation, purported
function summaries for recursive functions are computed. Our algorithm then
transforms the original recursive program into more non-recursive programs with
purported function summaries. It finally checks if purported function summaries
are correct by sending these non-recursive programs to the analyzer.

Compared with other analysis algorithms for recursive programs, ours is very
lightweight. It only performs syntactic transformation and requires standard
functionalities from underlying intraprocedure program analyzers. Moreover, our
technique is very modular. Any intraprocedural analyzer providing proofs of in-
ductive invariants can be employed in our algorithm. With the interface between
our algorithm and program analyzers described here, incorporating recursive
analysis with existing program analyzers thus only requires minimal implemen-
tation efforts. Recursive analysis hence benefits from future advanced intrapro-
cedural analysis with little cost through our lightweight and modular technique.

We implement a prototype using CPAChecker (over 140 thousand lines of
Java code) as the underlying program analyzer [6]. In our prototype, 1256 lines
of OCaml code are for syntactic transformation and 705 lines of Python code
for the rest of the algorithm. 270 lines among them are for extracting function
summaries. Since syntactic transformation is independent of underlying program
analyzers, only about 14% of code need to be rewritten should another analyzer
be employed. We compare it with program analyzers specialized for recursion in
experiments. Although CPAChecker does not support recursion, our prototype
scores slightly better than the second-place tool Ultimate Automizer on the
benchmarks in the 2014 Competition on Software Verification [9].
Organization: Preliminaries are given in Section 2. We give an overview of
our technique in Section 3. Technical contributions are presented in Section 4.
Section 5 reports experimental results. Section 6 describes related works. Finally,
some insights and improvements are discussed in Section 7.

2 Preliminaries

We consider a variant of the WHILE language [17]:

Expression 3 p ::= x x ∈ Vars

| false | true | 0 | 1 | . . . constant
| nondet nondeterministic value
| f(p) function invocation
| p� p � ∈ {+,−,=, >, and, or}
| not p

Command 3 c ::= x := p assignment
| c; c sequential composition
| return p function return
| assume p assumption
| assert p assertion

2

Vars denotes the set of program variables, and Vars′ = {x′ : x ∈ Vars} where
x′ represents the new value of x after execution of a command. The nondet

expression evaluates to a type-safe nondeterministic value. Simultaneous assign-
ments are allowed in our language. To execute a simultaneous assignment, all
expressions on the right hand side are first evaluated and then assigned to re-
spective variables. We assume that simultaneous assignments are type-safe in
the sense that the number of variables on the left-hand-side always matches that
of the right-hand-side. The return command accepts several expressions as ar-
guments. Together with simultaneous assignments, functions can have several
return values.

A function f is represented as a control flow graph (CFG) Gf =
〈V,E, cmdf, uf, rf, s, e〉 where the nodes in V are program locations, E ⊆ V × V
are edges, each edge (`, `′) ∈ E is labeled by the command cmdf(`, `′), uf and
rf are formal parameters and return variables of f, and s, e ∈ V are the entry
and exit locations of f. The superscript in Gf denotes the CFG corresponds to
the function f. The special main function specifies where a program starts. To
simplify presentation, we assume the functions in a program use disjoint sets of
variables and the values of formal parameters never change in a function. Notice
that this will not affect the expressiveness of a CFG because one can still make
copies of formal parameters by assignments and change the values of the copied
versions. Also we assume that there are no global variables because they can be
simulated by allowing simultaneous assignment to return variables [3].

Figure 1 shows control flow graphs for the McCarthy 91 program from [16].
The main function assumes the variable n is non-negative. It then checks if the
result of mc91(n) is no less than 90 (Figure 1a). The mc91 function branches on
whether the variable m is greater than 100. If so, it returns m − 10. Otherwise,
mc91(m) stores the result of mc91(m + 11) in s, and returns the result of mc91(s)
(Figure 1b). Observe that a conditional branch is modeled with the assume

command in the figure. Loops can be modeled similarly.

s

1

2

3

e

assume n >= 0

r := mc91(n)

assert [r = 91 or

(n > 101 and

r = n− 10)]

return 0

(a) main

s

1

2

3

4

e

assume m > 100

assume not(m > 100)

return m− 10

s := mc91(m + 11)

t := mc91(s)

return t

(b) mc91

Fig. 1: McCarthy 91

3

Let Gf = 〈V,E, cmdf, uf, rf, s, e〉 be a CFG. An inductive invariant
Π(Gf, I0) = {I` : ` ∈ V } for Gf from I0 is a set of first-order logic formu-
lae such that Is = I0, and for every (`, `′) ∈ E

I` ∧ τcmdf(`,`′) =⇒ I ′`′

where I ′ is obtained by replacing every x ∈ Vars in I with x′ ∈ Vars′, and
τcmdf(`,`′) specifies the semantics of the command cmdf(`, `′). An inductive in-
variant Π(Gf, I0) is an over-approximation to the computation of Gf from I0.
More precisely, assume that the function f starts from a state satisfying I0.
For every ` ∈ V , Gf must arrive in a state satisfying I` when the computation
reaches `.

Let T be a program fragment (it can be either a function represented as a
CFG or a sequence of program commands). P and Q are logic formulae. A Hoare
triple (|P |)T (|Q|) specifies that the program fragment T will reach a program
state satisfying Q provided that T starts with a program state satisfying P and
terminates. The formula P is called the precondition and Q is the postcondition
of the Hoare triple. We use the standard proof rules for partial correctness with
two additional rules for the assumption and assertion commands:

Assume
(|P |) assume q (|P ∧ q|)

P =⇒ q
Assert

(|P |) assert q (|P |)
The assume command excludes all computation not satisfying the given expres-
sion. The assert command aborts the computation if the given expression is
not implied by the precondition. No postcondition can be guaranteed in such a
case. Observe that an inductive invariant Π(Gf, I0) establishes (|I0|)Gf(|Ie|). A
program analyzer accepts programs as inputs and checks if all assertions (spec-
ified by the assert command) are satisfied. One way to implement program
analyzers is to compute inductive invariants.

Proposition 1. Let Gf = 〈V,E, cmdf, uf, rf, s, e〉 be a CFG and Π(Gf, true)
be an inductive invariant for Gf from true. If |= I` =⇒ B` for every edge
(`, `′) ∈ E with cmd(`, `′) = assert(B`), then all assertions in Gf are satisfied.

A program analyzer checks assertions by computing inductive invariants is called
an inductive program analyzer. Note that an inductive program analyzer need
not give any information when an assertion fails. Indeed, most inductive program
analyzers simply report false positives when inductive invariants are too coarse.
A recursion-free inductive program analyzer is a program analyzer that checks
recursion-free programs by computing inductive invariants. Several recursion-free
inductive program analyzers are available, such as CPAChecker [6], Blast [5],
UFO [2], Astrée [10], etc. Our goal is to check recursive programs by using a
recursion-free inductive program analyzer as a black box.

3 Overview

Let BasicAnalyzer denote a recursion-free inductive program analyzer, and
let a program P = {Gmain} ∪ {Gf : f is a function} consist of the CFGs of

4

the main function and functions that may be invoked (transitively) from main.
Since non-recursive functions can be replaced by their control flow graphs after
proper variable renaming, we assume that P only contains the main and recursive
functions. If P does not contain recursive functions, BasicAnalyzer is able to
check P by computing inductive invariants.

When P contains recursive functions, we transform Gmain into a recursion-
free program Gmain. The program Gmain under-approximates the computation
of Gmain. That is, every computation of Gmain is also a computation of Gmain.
If BasicAnalyzer finds an error in Gmain, our algorithm terminates and re-
ports it. Otherwise, BasicAnalyzer has computed an inductive invariant for
the recursion-free under-approximation Gmain. Our algorithm computes function
summaries of functions in P from the inductive invariant of Gmain. It then checks
if every function summary over-approximates the computation of the correspond-
ing function. If so, the algorithm terminates and reports that all assertions in P
are satisfied. If a function summary does not over-approximate the computation,
our algorithm unwinds the recursive function and reiterates (Algorithm 1).

Input: A program P = {Gmain} ∪ {Gf : f is a function}
k ← 0;
P0 ← P ;
repeat

k ← k + 1;
Pk ← unwind every CFG in Pk−1;
switch BasicAnalyzer (Gmain

k) do
case Pass(Π (Gmain

k , true)):
S := ComputeSummary(Pk, Π(Gmain

k , true))
case Error: return Error ;

complete?← CheckSummary(Pk, S);

until complete?;
return Pass(Π(Gmain

k , true)), S;
Algorithm 1: Overview

To see how to under-approximate computation, consider a control flow graph
Gmain

k . The under-approximation Gmain
k is obtained by substituting the command

assume false for every command with recursive function calls (Figure 2). The
substitution effectively blocks all recursive invocations. Any computation of
Gmain

k hence is also a computation of Gmain
k . Note that Gmain

k is recursion-free.
BasicAnalyzer is able to check the under-approximation Gmain

k .

When BasicAnalyzer does not find any error in the under-approximation
Gmain

k , it computes an inductive invariant Π(Gmain
k , true). Our algorithm then

computes summaries of functions in P . For each function f with formal parame-
ters uf and return variables rf, a function summary for f is a first-order conjunc-
tive formula which specifies the relation between its formal parameters and re-
turn variables. The algorithm ComputeSummary(Pk, Π(Gmain

k , true)) computes
summaries S by inspecting the inductive invariant Π(Gmain

k , true) (Section 4.3).

5

s

1

2

3

e

smc911

11

21

31

41

emc911

assume n >= 0

m1 := n

assert [r = 91 or

(n > 101 and

r = n− 10)]

return 0

assume m1 > 100

assume not(m1 > 100)

rmc91 :=
m1 − 10

assume false

assume false

rmc911 := t1
r := rmc911

Fig. 2: Under-approximation of McCarthy 91

After function summaries are computed, Algorithm 1 verifies whether
function summaries correctly specify computations of functions by invoking
CheckSummary(Pk, S). The algorithm CheckSummary(Pk, S) checks this by
constructing a recursion-free control flow graph G̃f with additional assertions
for each function f and verifying G̃f with BasicAnalyzer. The control flow
graph G̃f is obtained by substituting function summaries for function calls. It
is transformed from Gf by the following three steps:

1. Replace every function call by instantiating the summary for the callee;
2. Replace every return command by assignments to return variables;
3. Add an assertion to validate the summary at the end.

Figure 3 shows the control flow graph G̃mc91 with the function summary
S[mc91] = not(m ≥ 0). Observe that G̃mc91 is recursion-free. BasicAnalyzer
is able to check G̃mc91 and invalidates this function summary.

s

1

2

3

4

5

e

assume m > 100

assume not(m > 100)

rmc91 := m− 10

s := nondet;
assume not(m + 11 ≥ 0)

t := nondet;
assume not(s ≥ 0)

rmc91 := t

assert not(m ≥ 0)

Fig. 3: Check Summary in McCarthy 91

6

In order to refine function summaries, our algorithm unwinds recursive func-
tions as usual. More precisely, consider a recursive function f with formal pa-
rameters uf and return variables rf. Let Gf be the control flow graph of f and
Gmain

k be a control flow graph that invokes f. To unwind f in Gmain
k , we first

construct a control flow graph Hf by replacing every return q command in f

with the assignment rf := q. For each edge (`, `′) labeled with the command
x := f(p) in Gmain

k , we remove the edge (`, `′), make a fresh copy Kf of Hf by
renaming all nodes and variables, and then add two edges: add an edge from
` to the entry node of Kf that assigns p to fresh copies of formal parameters
in Kf and another edge from the exit node to `′ that assigns fresh copies of
return variables to x. The control flow graph Gmain

k+1 is obtained by unwinding
every function call in Gmain

k . Figure 4 shows the control flow graph obtained by
unwinding main twice. Note that the unwinding graph Gmain

k+1 still has recursive

function calls. Its under-approximation Gmain
k+1 is more accurate than Gmain

k .

s

1

2

3

e

smc911

11

21

31

41

emc911

s2

12

22

32

42

e2

s3

13

23

33

43

e3

assume n >= 0

m1 := n

assert [r = 91 or

(n > 101 and

r = n− 10)]

return 0

assume

m1 > 100

assume

not(m1 > 100)

rmc911 :=
m1 − 10

m2 := m1 + 11

m3 := s1

rmc911 := t1

r := rmc911

assume

m2 > 100

assume not(m2 > 100)

rmc912 := m2 − 10

s2 := mc91(m2 + 11)

t2 := mc91(s2)

rmc912 := t2
s1 := rmc912

assume m3 > 100

assume not(m3 > 100)

rmc913 :=
m3 − 10

s3 := mc91(m3 + 11)

t3 := mc91(s3)

rmc913 := t3

t1 := rmc913

Fig. 4: Unwinding McCarthy 91

4 Proving via Transformation

We give details of the constructions and establish the soundness of Algorithm 1.
Our goal is to establish the following theorem:

Theorem 1. Let Gmain = 〈V,E, cmdmain, umain, rmain, s, e〉 be a control flow graph
in P . If Algorithm 1 returns Pass, there is an inductive invariant Π(Gmain, true)
such that I` =⇒ B` for every (`, `′) ∈ E with cmdmain(`, `′) = assert B`.

By Proposition 1, it follows that all assertions in Gmain are satisfied. Moreover,
by the semantics of the assert command, all assertions in the program are
satisfied.

7

`

`′

markf(rename(Gg, i))

`

`′

sgi

egi

x := g(p)

u
g
i := p

x := r
g
i

Fig. 5: Unwinding Function Calls

4.1 Unwinding

We first define the rename function rename(Gf, i). It returns a CFG
〈Vi, Ei, cmdf

i , u
f
i , r

f
i , si, ei〉 obtained by first replacing every return command

return q by assignments to return variables rf := q and then renaming all
variables and locations in Gf with the index value i. The function unwind(Gf)
returns a CFG Kf obtained by replacing all function call edges in Gf with the
CFG of the called function after renaming. In order to help extracting sum-
maries from the Kf, unwind(Gf) annotates in Kf the outermost pair of the
entry and exit locations si and ei of each unwound function g with an additional
superscript g, i.e., s

g
i and e

g
i (Figure 5). The formal definition is given below.

Given a CFG Gf = 〈V,E, cmdf, uf, rf, s, e〉, we use Ê = {e ∈ E : cmdf(e) =
(x := g(p))} to denote the set of function call edges in E and define a function
idx(e) that maps a call edge e to a unique index value. The function markf(G

g)
returns a CFG that is identical to Gg, except that, for the case that no location
with superscript g appears in V (the locations of Gf), it annotates the entry and
exit locations, sk and ek, of the returned CFG with superscript g, i.e., sgk and egk.
Note that, for each unwinding of function call, we mark only the outermost pair of
its entry and exit locations. Formally, unwind(Gf) = 〈Vu, Eu, cmdf

u, u
f, rf, s, e〉

such that (1) Vu = V ∪
⋃
{Vi : (`, `′) ∈ Ê∧cmdf(`, `′) = (x := g(p))∧ idx(`, `′) =

i ∧ markf(rename(Gg, i)) = 〈Vi, Ei, cmdg
i , u

g
i , r

g
i , s

′, e′〉} (2) Eu = E \ Ê ∪⋃
{Ei ∪ {(`, s′), (e′, `′)} : (`, `′) ∈ Ê ∧ cmdf(`, `′) = (x := g(p)) ∧ idx(`, `′) =

i ∧ markf(rename(Gg, i)) = 〈Vi, Ei, cmdg
i , u

g
i , r

g
i , s

′, e′〉} with cmdf
u(`, s′) =

(u
g
i := p) and cmdf

u(e′, `′) = (x := r
g
i).

Proposition 2. Let Gf be a control flow graph. P and Q are logic formulae
with free variables over program variables of Gf. (|P |) Gf (|Q|) if and only if
(|P |) unwind(Gf) (|Q|).
Essentially, Gf and unwind(Gf) represent the same function f. The only differ-
ence is that the latter has more program variables after unwinding, but this does
not affect the states over program variables of Gf before and after the function.

4.2 Under-approximation

Let Gf = 〈V,E, cmdf, uf, rf, s, e〉 be a control flow graph. The control flow graph
Gf = 〈V,E, cmdf, uf, rf, s, e〉 is obtained by replacing every function call in G

8

`

`′

`

`′

x := g(p) assume false

Fig. 6: Under-approximation

with assume false (Figure 6). That is,

cmdf(`, `′) =

{
cmdf(`, `′) if cmdf(`, `′) does not contain function calls
assume false otherwise

Proposition 3. Let Gf be a control flow graph. P and Q are logic formulae with
free variables over program variables of Gf. If (|P |)Gf(|Q|), then (|P |)Gf(|Q|).

The above holds because the computation of Gf under-approximates the com-
putation of Gf. If all computation of Gf from a state satisfying P always ends
with a state satisfying Q, the same should also hold for the computation of Gf.

4.3 Computing Summaries

Let the CFG for the main function Gmain
k = 〈V,E, cmdmain, umain, rmain, s, e〉.

Function ComputeSummary(Pk, Π(Gmain
k , true)) extracts summaries from the

inductive invariant Π(Gmain
k , true) = {I` : ` ∈ V } (Algorithm 2).

Input: Pk: a program; {I` : ` ∈ V }: an inductive invariant of Gmain
k

Output: S[•]: function summaries
foreach function f in the program Pk do

S[f] := true;
foreach pair of locations (sfi , e

f
i) ∈ V × V do

if Isfi contains return variables of f then S[f] := S[f] ∧ ∀Xf.Iefi ;

else S[f] := S[f] ∧ ∀Xf.(Isfi =⇒ Iefi) ;

return S[•];
Algorithm 2: ComputeSummary(Pk, Π(Gmain

k , true))

For each function f in the program Pk, we first initialize its summary S[f] to
true. The setXf contains all variables appearing inGmain

k except the set of formal
parameters and return variables of f. For each pair of locations (sfi , e

f
i) ∈ V ×V

in Gmain
k , if the invariant of location sfi contains return variables of f, we update

S[f] to the formula S[f] ∧ ∀Xf.Iefi . Otherwise, we update it to a less restricted
version S[f] ∧ ∀Xf.(Isfi =⇒ Iefi) (Figure 7).

9

markf(rename(Gf, i))

`

`′

sfi

efi

add ∀Xf.(Isfi =⇒ Iefi) to S[f]

ufi := p

x := rfi

Fig. 7: Updating a Summary

Proposition 4. Let Q be a formula over all variables in Gmain
k except rf. We

have (|Q|) rf := f(uf) (|Q|).

The proposition holds because the only possible overlap of variables in Q and
in rf := f(uf) are the formal parameters uf. However, we assume that values
of formal parameters do not change in a function (see Section 2); hence the
values of all variables in Q stay the same after the execution of the function call
rf := f(uf).

Proposition 5. Given the CFG Gmain
k = 〈V,E, cmdmain, umain, rmain, s, e〉. If

(|true|) rf := f(uf) (|S[f]|) holds, then (|Isfi |) rf := f(uf) (|Iefi |) for all (sfi , e
f
i) ∈

V × V .

For each pair (sfi , e
f
i) ∈ V × V , we consider two cases:

1. Isfi contains some return variables of f:
In this case, the conjunct ∀Xf.Iefi is a part of S[f], we then have

(|true|) rf := f(uf) (|S[f]|)
Postcondition Weakening

(|true|) rf := f(uf) (|∀Xf.Iefi |) Postcondition Weakening
(|true|) rf := f(uf) (|Iefi |) Precondition Strengthening
(|Isfi |) r

f := f(uf) (|Iefi |)

2. Isfi does not contain any return variables of f:
In this case, the conjunct ∀Xf.(Isfi =⇒ Iefi) is a part of S[f], we then have

Prop. 4
(|Isfk |) r

f := f(uf) (|Isfk |)

(|true|) rf := f(uf) (|S[f]|)
(|true|) rf := f(uf) (|∀Xf.(Isfk =⇒ Iefk)|)

(|true|) rf := f(uf) (|Isfk =⇒ Iefk |)
(|Isfk |) r

f := f(uf) (|Isfk =⇒ Iefk |)
(|Isfk |) r

f := f(uf) (|Iefk |)

10

`

`′

`

`′

`

`′

`

`′

x := g(p)
x := nondet;
assume S[g][ug 7→ p, rg 7→ x]

return q r := q

Fig. 8: Instantiating a Summary

4.4 Checking Summaries

Here we explain how to handle the function CheckSummary(Pk, S[•]), where
Pk is an unwound program and S[•] is an array of function summaries. Let
Gf

k = 〈V,E, cmdf, uf, rf, s, e〉 be a control flow graph for the function f in Pk.
In order to check whether the function summary S[f] for f specifies the relation
between the formal parameters and return values of f, we define another control

flow graph Ĝf
k,S = 〈V,E, ˆcmd

f
, uf, rf, s, e〉 where

ˆcmd
f
(`, `′) =


x := nondet; assume S[g][ug 7→ p, rg 7→ x] if cmdf(`, `′) = x := g(p)
rf := q if cmdf(`, `′) = return q
cmdf(`, `′) otherwise

The control flow graph Ĝf
k,S replaces every function call in Gf

k by instan-
tiating a function summary (Figure 8). Using the Hoare Logic proof rule for
recursive functions [22], we have the following proposition:

Proposition 6. Let Gf
k = 〈V,E, cmdf, uf, rf, s, e〉 be the control flow graph for

the function f and S[•] be an array of logic formulae over the formal parameters
and return variables of each function. If (|true|) Ĝg

k,S (|S[g]|) for every function

g in P , then (|true|) rf := f(uf) (|S[f]|).

It is easy to check (|true|) Ĝg
k,S (|S[g]|) by program analysis. LetGf

k be the con-

trol flow graph for the function f and Ĝg
k,S = 〈V,E, ˆcmd

f
, uf, rf, s, e〉 as above.

Consider another control flow graph G̃f
k,S = 〈Ṽ , Ẽ, ˜cmd

f
, uf, rf, s, e〉 where

Ṽ = V ∪ {ẽ}
Ẽ = E ∪ {(e, ẽ)}

˜cmd
f
(`, `′) =

{
ˆcmd

f
(`, `′) if (`, `′) ∈ E

assert S[f] if (`, `′) = (e, ẽ)

Corollary 1. Let Gf
k = 〈V,E, cmdf, uf, rf, s, e〉 be the control flow graph for the

function f and S[•] be an array of logic formulae over the formal parameters
and return variables of each function. If BasicChecker(G̃g

k,S) returns Pass

for every function g in P , then (|true|) rf := f(uf) (|S[f]|).

11

Input: Pk : an unwound program; S[•] : an array of function summaries
Output: true if all function summaries are valid; false otherwise
foreach function Gg

k ∈ Pk do

if BasicChecker(G̃g

k,S) 6= Pass then return false ;

return true;

Algorithm 3: CheckSummary(Pk, S)

4.5 Correctness

We are ready to sketch the proof of Theorem 1. Assume Algorithm 1 re-
turns Pass(Π(Gmain

k , true)) and S[•] on the input control flow graph Gmain =
〈V,E, cmdmain, umain, rmain, s, e〉. Let Gmain

k = 〈V k, Ek, cmdmain
k , umain, rmain, s, e〉

and Π(Gmain
k , true) = {I` : ` ∈ V k}. By the definition of inductive invariants,

we have (|I`|) cmdmain
k (`, `′) (|I`′ |) for every (`, `′) ∈ Ek. Moreover, V ⊆ V k

since Gmain
k is obtained by unwinding Gmain. Define Γ (Gmain, true) = {I` ∈

Π(Gmain
k , true) : ` ∈ V }. We claim Γ (Gmain, true) is in fact an inductive invari-

ant for Gmain.
Let Ê = {(`, `′) ∈ E : cmdmain(`, `′) = x := f(p)}. We have cmdmain(`, `′) =

cmdmain
k (`, `′) for every (`, `′) ∈ E \ Ê. Thus (|I`|) cmdmain(`, `′) (|I`′ |) for ev-

ery (`, `′) ∈ E \ Ê by the definition of Γ (G, true) and the inductiveness of
Π(Gmain

k , true). It suffices to show that

(|I`|) x := f(p) (|I`′ |) or, equivalently, (|I`|) uf := p; rf := f(uf); x := rf (|I`′ |)

for every (`, `′) ∈ Ê. By the inductiveness of Π(Gmain
k , true), we have (|I`|) uf :=

p (|Isfk |) and (|Iefk |) x := rf (|I`′ |). Moreover, (|Isfk |) r
f := f(uf) (|Iefk |) by Proposi-

tion 5 and 6. Therefore

(|I`|) uf := p (|Isfk |) (|Isfk |) r
f := f(uf) (|Iefk |) (|Iefk |) x := rf (|I`′ |)

(|I`|) uf := p; rf := f(uf); x := rf (|I`′ |)
(|I`|) x := f(p) (|I`′ |)

5 Experiments

A prototype tool of our approach has been implemented with CPAChecker
1.2.11-svcomp14b3 as the underlying intraprocedural analyzer. In addition, be-
cause CPAChecker does not support universal quantifiers in the expression of
an assume command, we used Redlog [19] for quantifier elimination. To eval-
uate our tool, we performed experiments with all the benchmarks from the re-
cursive category in the 2014 Competition on Software Verification (SV-COMP

3 We use script/cpa.sh to invoke CPAChecker and use the configuration
file available at https://github.com/fmlab-iis/transformer/blob/master/tool/
verifier-conf/myCPA-PredAbstract-LIA.properties.

12

2014) [9] and followed the rules and the score schema (shown in Table 1) of the
competition. The experimental results show that our tool is quite competitive
even compared with the winners of the competition. It is solid evidence that
our approach not only extends program analyzers to handle recursion but also
provides comparable effectiveness.

Our tool was compared with four participants of SV-COMP 2014, namely
Blast 2.7.24 [5], CBMC 4.5-sv-comp-2014 [8] with a wrapper cbmc-wrapper.sh5,
Ultimate Automizer [13], and Ultimate Kojak [21]. The latter three tools
are the top three winners of the recursive category in SV-COMP 2014. The
recursive programs from the benchmarks of the recursive category comprise 16
bug-free and 7 buggy C programs. The experiments were performed on a virtual
machine with 4 GB of memory running 64-bit Ubuntu 12.04 LTS. The virtual
machine ran on a host with an Intel Core i7-870 Quad-Core CPU running 64-bit
Windows 7. The timeout of a verification task is 900 seconds.

The results are summarized in Table 2 where k is the number of unwindings of
recursive functions in Algorithm 1, Time is measured in seconds, the superscript
! or ? indicates that the returned result is respectively incorrect or unknown, E
indicates exceptions, and T.O. indicates timeouts. The parenthesized numbers
of CBMC are obtained by excluding certain cases, which will be explained later.

The results show that CBMC outperforms all the other tools. However,
CBMC reports safe if no bug is found in a program within a given time bound6,
which is set to 850 seconds in cbmc-wrapper.sh. In this case, the behaviors of the
program within certain length bounds are proven to be safe, but the absence of
bugs is not guaranteed (see Addition03 false.c in Table 2 for a counterexample).
If we ignore such cases in the experiments, CBMC will obtain a score of 14, and
the gap between the scores of CBMC and our tool becomes much smaller. More-
over, this gap may be narrowed if we turn on some important optimizations such
as adjustment of block encoding provided in CPAChecker. We chose to disable
the optimizations in order to simplify the implementation of our prototype tool.

Compared to Ultimate Automizer, Ultimate Kojak, and Blast, our
tool can verify more programs and obtain a higher score. The scores of our tool
and Ultimate Automizer are very close mainly because of a false positive
produced by our tool. The false positive in fact came from a spurious error
trace reported by CPAChecker because modulo operation is approximated in
CPAChecker. If this case is excluded, our tool can obtain a score of 16.

6 Related Works

In [14, 15], a program transformation technique for checking context-bounded
concurrent programs to sequential analysis is developed. Numerous intrapro-

4 We use the arguments -alias empty -enable-recursion -noprofile -cref -sv-
comp -lattice -include-lattice symb -nosserr with Blast.

5 The wrapper cbmc-wrapper.sh is provided by CBMC 4.5-sv-comp-2014, which is a
special version for SV-COMP 2014.

6 This was confirmed in a private communication with the developers of CBMC.

13

Table 1: Score schema in SV-COMP 2014.

Points Program Correctness Reported Result

0 TRUE or FALSE UNKNOWN (due to timeout or exceptions)
+1 FALSE FALSE
-4 TRUE FALSE
+2 TRUE TRUE
-8 FALSE TRUE

Table 2: Experimental results of verifying programs in the recursive category
of the 2014 Competition on Software Verification. (Time in sec.)

Program
Our Tool

Ultimate Ultimate
CBMC 4.5 Blast 2.7.2

Automizer Kojak
k Time Time Time Time Time

Ackermann01 true.c 1 6.5 T.O. T.O. 850.0 E
Ackermann02 false.c 4 57.3 4.2 T.O. 1.0 E
Ackermann03 true.c T.O. T.O. T.O. 850.0 E
Ackermann04 true.c T.O. T.O. T.O. 850.0 E
Addition01 true.c 2 14.1 T.O. T.O. 850.0 E
Addition02 false.c 2 9.9 3.7 3.5 0.3 4.0

Addition03 false.c T.O. T.O. T.O. 850.0! E

EvenOdd01 true.c 1 2.9! T.O. T.O. 1.3 0.1!

EvenOdd03 false.c 1 2.9 3.2 3.2 0.1 0.1
Fibonacci01 true.c 6 348.4 T.O. T.O. 850.0 E

Fibonacci02 true.c T.O. 60.7 72.1? 0.8 E
Fibonacci03 true.c T.O. T.O. T.O. 850.0 E
Fibonacci04 false.c 5 107.3 7.4 8.2 0.4 E
Fibonacci05 false.c T.O. 128.9 23.2 557.2 E

gcd01 true.c 1 6.6 5.4 7.3 850.0 16.1!

gcd02 true.c T.O. T.O. T.O. 850.0 E
McCarthy91 false.c 1 2.8 3.2 3.1 0.3 0.1

McCarthy91 true.c 2 12.5 81.3 6.8 850.0 16.2!

MultCommutative true.c T.O. T.O. T.O. 850.0 E
Primes true.c T.O. T.O. T.O. 850.0 E

recHanoi01 true.c T.O. T.O. T.O. 850.0 E

recHanoi02 true.c 1 5.6 T.O. T.O. 0.7 1.9!

recHanoi03 true.c T.O. T.O. T.O. 0.7 E

correct results 11 9 7 22 (10) 3
false negative 0 0 0 1 (0) 0
false positive 1 0 0 0 (0) 4

score 13 12 9 30 (14) -13

14

cedural analysis techniques have been developed over the years. Many tools
are in fact freely available (see, for instance, Blast [5], CPAChecker [6], and
UFO [2]). Interprocedural analysis techniques are also available (see [20, 4, 10, 12,
11, 18] for a partial list). Recently, recursive analysis attracts new attention. The
Competition on Software Verification adds a new category for recursive programs
in 2014 [9]. Among the participants, CBMC [8], Ultimate Automizer [13],
and Ultimiate Kojak [21] are the top three tools for the recursive category.

Inspired by Whale [1], we use inductive invariants obtained from verifying
under-approximation as candidates of summaries. Also, similar to Whale, we
apply a Hoare logic proof rule for recursive calls from [22]. However, our tech-
nique works on control flow graphs and builds on an intraprocedural analysis
tool. It is hence very lightweight and modular. Better intraprocedural analysis
tools easily give better recursive analysis through our technique. Whale, on the
other hand, analyzes by exploring abstract reachability graphs. Since Whale
extends summary computation and covering relations for recursion, its imple-
mentation is more involved.

7 Discussion

The number of unwindings is perhaps the most important factor in our recursive
analysis technique (Table 2). We find that CPAChecker performs poorly when
many unwindings are needed. We however do not enable the more efficient block
encoding in CPAChecker for the ease of implementation. One can improve the
performance of our algorithm with the efficient but complicated block encoding.
A bounded analyzer may also speed up the verification of bounded properties.

Our algorithm extracts function summaries from inductive invariants. There
are certainly many heuristics to optimize the computation of function summaries.
For instance, some program analyzers return error traces when properties fail.
In particular, a valuation of formal parameters is obtained when CheckSummary
(Algorithm 3) returns false. If the valuation is not possible in the main function,
one can use its inductive invariant to refine function summaries. We in fact
exploit error traces computed by CPAChecker in the implementation.

Acknowledgment

This work was partially supported by Ministry of Science and Technology under
grant numbers 100-2221-E-002 -122 -, 102-2221-E-001 -017 -, 102-2221-E-001
-018 -, and the postdoctoral fellow program of Academia Sinica, Taiwan.

References

1. Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Whale: An interpolation-
based algorithm for inter-procedural verification. In VMCAI, pages 39–55, 2012.

15

2. Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. Ufo: A framework
for abstraction- and interpolation-based software verification. In CAV, pages 672–
678, 2012.

3. Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker for
boolean programs. In SPIN, pages 113–130, 2000.

4. Thomas Ball and Sriram K. Rajamani. The SLAM toolkit. In CAV, pages 260–264,
2001.

5. Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The
software model checker Blast. STTT, 9(5-6):505–525, 2007.

6. Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for configurable software
verification. In CAV, pages 184–190, 2011.

7. Edmund M. Clarke, Himanshu Jain, and Nishant Sinha. Grand challenge: Model
check software. In VISSAS, pages 55–68, 2005.

8. Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-
C programs. In TACAS, pages 168–176, 2004.

9. Competition on software verification. http://sv-comp.sosy-lab.org/2014.
10. Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,

David Monniaux, and Xavier Rival. The ASTREÉ analyzer. In ESOP, pages
21–30, 2005.

11. Coverity. http://www.coverity.com/.
12. Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Sig-

noles, and Boris Yakobowski. Frama-C - a software analysis perspective. In SEFM,
pages 233–247, 2012.

13. Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Evren Ermis, Jochen Hoenicke,
Markus Lindenmann, Alexander Nutz, Christian Schilling, and Andreas Podelski.
Ultimate Automizer with SMTInterpol - (competition contribution). In TACAS,
pages 641–643, 2013.

14. Akash Lal and Thomas W. Reps. Reducing concurrent analysis under a context
bound to sequential analysis. In CAV, pages 37–51, 2008.

15. Akash Lal and Thomas W. Reps. Reducing concurrent analysis under a context
bound to sequential analysis. Formal Methods in System Design, 35(1):73–97, 2009.

16. Zohar Manna and Amir Pnueli. Formalization of properties of functional programs.
J. ACM, 17(3):555–569, 1970.

17. Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer, 1999. ISBN 978-3-540-65410-0.

18. Polyspace. http://www.mathworks.com/products/polyspace/.
19. Redlog. http://www.redlog.eu/.
20. Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interprocedural

dataflow analysis via graph reachability. In POPL, pages 49–61, 1995.
21. Ultimate Kojak. http://ultimate.informatik.uni-freiburg.de/kojak/.
22. David von Oheimb. Hoare logic for mutual recursion and local variables. In

FSTTCS, pages 168–180, 1999.

16

