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Abstract. We propose an automatic fence insertion and verification framework
for concurrent programs running under relaxed memory. Unlike previous ap-
proaches to this problem, which allow only variables of finite domain, we target
programs with (unbounded) integer variables. The problem is difficult because it
has two different sources of infiniteness: unbounded store buffers and unbounded
integer variables. Our framework consists of three main components: (1) a fi-
nite abstraction technique for the store buffers, (2) a finite abstraction technique
for the integer variables, and (3) a counterexample guided abstraction refinement
loop of the model obtained from the combination of the two abstraction tech-
niques. We have implemented a prototype based on the framework and run it
successfully on all standard benchmarks together with several challenging exam-
ples that are beyond the applicability of existing methods.

1 Introduction

Modern concurrent process architectures allow relaxed memory, in which certain mem-
ory operations may overtake each other. The use of weak memory models makes rea-
soning about the behaviors of concurrent programs much more difficult and error-prone
compared to the classical sequential consistency (SC) memory model. In fact, several
algorithms that are designed for the synchronization of concurrent processes, such as
mutual exclusion and producer-consumer protocols, are not correct when run on weak
memories [3]. One way to eliminate the non-desired behaviors resulting from the use
of weak memory models is to insert memory fence instructions in the program code.
A fence instruction forbids certain reordering between instructions issued by the same
process. For example, a fence may forbid an operation issued after the fence instruction
to overtake an operation issued before it. Recently, several research efforts [9, 8, 14, 6,
15, 13, 18, 5, 4, 10, 11, 2] have targeted developing automatic verification and fence in-
sertion algorithms of concurrent programs under relaxed memory. However, all these
approaches target finite state programs. For the problem of analyzing algorithms/pro-
grams with mathematical integer variables (i.e., variables of an infinite data domain),
these approaches can only approximate them by, e.g., restricting the upper and lower
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bounds of variables. The main challenge of the problem is that it contains two different
dimensions of infiniteness. First, under relaxed memory, memory operations may be
temporarily stored in a buffer before they become effective and the size of the buffer is
unbounded. Second, the variables are ranging over an infinite data domain.

In this paper, we propose a framework (Fig. 1) that can automatically verify a con-
current system S (will be defined in Sec. 2) with integer variables under relaxed mem-
ory and insert fences as necessary to make it correct. The framework consists of three
main components. The first component (Sec. 4) is responsible for finding a finite ab-
straction of the unbounded store buffers. In the paper, we choose to instantiate it with
a technique introduced in [15]. Each store buffer in the system keeps only the first k
operations and makes a finite over-approximation of the rest. For convenience, we call
this technique k-abstraction in this paper. The second component (Sec. 5) (1) finds a
finite abstraction of the data and then (2) combines it with the first abstraction to form a
finite combined abstraction for both the buffer and data. For the data abstraction, in this
paper we choose to instantiate it with predicate abstraction; a finite set of predicates
over integer variables in the system is applied to partition the infinite data domain into
finitely many parts. The combined abstraction gives us a finite state abstraction of the
concurrent system S . A standard reachability algorithm (Sec. 6) is then performed on
the finite abstraction. For the case that a counterexample is returned, the third compo-
nent analyzes it (Sec. 7) and depending on the result of the analysis it may refine the
concurrent system by adding fences, refine the abstract model by increasing k or adding
more predicates, or report that ce is an unpreventable counterexample trace, i.e., a bad
behavior exists even in the SC model and cannot be removed by adding fences.

Concurrent System S

Counter Example ce

Safe

Reachability Check-
ing Algorithm (Sec. 6)

Abstraction of
Buffers (Sec. 4)

Abstraction of
Variables (Sec. 5)

Counter Example
Analysis (Sec. 7)

Case (1)

Case (2)

Case (3)

Case (4)

Bug in SC

Add new fences

Increase k

Add new predicates

Case (1) ce is feasible under SC

Case (2) ce is infeasible under SC, but feasible under TSO

Case (3) ce is infeasible under TSO, but feasible under k-abstraction

Case (4) ce is infeasible under k-abstraction, but feasible under comb-abstraction

Fig. 1. Our fence insertion/verification framework

Because of the space limit and in order to simplify presentation, we demonstrate our
technique under the total store order (TSO) memory model. However, our technique can



be generalized to other memory models such as the partial store order (PSO) memory
model. In this paper, we use the usual formal model of TSO, developed in, e.g., [20, 23],
and assume that it gives a faithful description of the actual hardware on which we run
our programs. Conceptually, the TSO model adds a FIFO buffer between each process
and the main memory (Fig. 2). The buffer is used to store the write operations performed
by the process. Thus, a process executing a write operation inserts it into its store buffer
and immediately continues executing subsequent operations. Memory updates are then
performed by non-deterministically choosing a process and executing the oldest write
operation in its buffer. A read operation by a process p on a variable x can overtake
some write operations stored in its own buffer if all these operations concern variables
that are different from x. Thus, if the buffer contains some write operations to x, then
the read value must correspond to the value of the most recent write operation to x.
Otherwise, the value is fetched from the memory. A fence means that the buffer of the
process must be flushed before the program can continue beyond the fence. Notice that
the store buffers of the processes are unbounded since there is a priori no limit on the
number of write operations that can be issued by a process before a memory update
occurs.

Memory
x = 8
y = 7

Read x, value of x is in the buffer.

Read y, value of y is NOT in the buffer.

(x,3) (x,2) (x,7) (x,2) ← Process q

(x,5) (y,7) (x,4) (y,3) ← Process p

Fig. 2. TSO memory model.

To our knowledge, our approach is
the first automatic verification and fence
insertion method for concurrent integer
programs under relaxed memory. We im-
plemented a prototype and run it success-
fully on all standard benchmarks together
with challenging examples that are be-
yond the applicability of existing meth-
ods. For instance, we can verify Lam-
port’s Bakery algorithm without assum-
ing an upper bound on ticket numbers.

2 Concurrent Systems

Our goal is to verify safety properties of
concurrent systems under relaxed memory. A concurrent system (P,A,XS,XL) consists
of a set of processes P running in parallel with shared variables XS and local variables
XL. These processes P are modeled by a set of finite automata A = {Ap | p ∈ P}. Each
process p in P corresponds to an automaton Ap in A. Each local variable in XL belongs
to one process in P, i.e., we assume that two processes will not use the same local
variable in XL. The automaton Ap is a triple (Qp,qinit

p ,δp), where Qp is a finite set of
program locations (sometimes “locations” for short), qinit

p is the initial program location,
and δp is a finite set of transitions. Each transition is a triple (l,op, l′), where l, l′

are locations and op is an operation in one of the following forms: (1) read operation
read(x,v), (2) write operation write(x,v), (3) fence operation f ence, (4) atomic read
write operation arw(x,v,w), (5) assignment operation v := e, and (6) guard operation
e1 ◦ e2, for ◦ ∈ {>,=,<}. In the above, x is a shared variable in XS, v,w are local
variables in XL, and e, e1, e2 are quantifier-free Presburger formulae over XL. We write



l
op−→p l′ to denote that (l,op, l′) ∈ δp. We assume that Qp ∩Qq = /0 for all p,q ∈ P

such that p 6= q and use Q to denote the set of all locations in the concurrent program,
i.e., Q =

⋃
p∈P Qp. In the next section, we formally define the semantics of concurrent

systems under TSO and the verification problem we are interested in.

3 The TSO Transition System

We define the semantics of concurrent systems under TSO in this section. We begin
with the definition of some terms and notations that will be used in this paper. In the
rest of the paper, we fix a concurrent system S = (P,A,XS,XL).

3.1 Definitions and Notations

We write N for the set of natural numbers (the set of positive integers) and Z for
the set of integers. Given a set S, we use |S| to denote the cardinality of S. For each
process p ∈ P and an integer value i ∈ N , we use the variable bp,i to denote the i-th
operation of the store buffer of p. We assume that the smaller the value i is, the closer
it is to the memory, i.e., the longer it stayed in the buffer. We use XB to denote the set
{bp,i | p ∈ P∧ i ∈N } and call it the set of buffer variables. For a partial function f , we
use the notation f (x) =⊥ to denote that f is undefined on x.

After these basic definitions, we will start to explain the semantics of concurrent
systems under TSO. This is done by first defining system configurations and then the
transition relation between these configurations w.r.t different operations.

3.2 Configurations

A configuration is a snapshot of a concurrent system, which captures values of shared
and local variables, the current location of each process, and the content of the store
buffers. Formally, we define a configuration as a tuple (M,L, pc,Bx,Bv), where M :
XS→Z maps a shared variable to its value, L : XL→Z maps a local variable to its value,
the function pc : P→ Q maps a process p to its current location in Qp, Bx : XB → XS
maps a buffer variable to its corresponding shared variable, and Bv : XB → Z maps a
buffer variable to its value. For example, if the i-th operation in the buffer of process
p is (x,3) (update the value of x to 3), then Bx(bp,i) = x and Bv(bp,i) = 3. Notice that
here the functions Bx and Bv are partial. A configuration (M,L, pc,Bx,Bv) is said to be
initial if pc(p) = qinit

p for all p ∈ P, M(x) = 0, L(v) = 0, Bx(b) =⊥, Bv(b) =⊥ for all
x ∈ XS, v ∈ XL and b ∈ XB

1.

3.3 Transition Relation

The transition relation between configurations is defined as follows. Assume that in the
concurrent system S , we have l

op−−→p l′. There exists a transition from the configuration

1 Notice that for simplicity we assume the initial values of all shared and local variables are 0.
This can be generalized by defining a new symbol > representing arbitrary integer values and
assigning the initial values of all shared and local variables to >.



(M,L, pc,B) to a next configuration (M′,L′, pc′,B′) if the following hold: (1) pc(p) = l,
pc′(p) = l′, ∀q ∈ P.q 6= p→ pc(q) = pc′(q) and (2) at least one of the transition rules
in Fig.3 is satisfied. Below we explain the rules in Fig.3.

Contain(x)

L’(v)=LastWrite(x)
READ-B

¬Contain(x)

L’(v)=M(x)
READ-M

|Bp|= i

B′x(bp,i+1) = x B′v(bp,i+1) = L(v)
WRITE

Empty
FENCE

Empty M(x) = L(v)

M′(x) = L(w)
ARW

L′(v) = e[L]
ASSIGN e1[L]◦ e2[L]

GUARD
|Bp|= i Bx(bp,1) = x1 . . . Bx(bp,i) = xi Bv(bp,1) = v1 . . . Bv(bp,i) = vi

M′(x1) = v1 B′x(bp,1) = x2 . . . B′x(bp,i−1) = xi B′v(bp,1) = v2 . . . B′v(bp,i−1) = vi B′x(bp,i) = B′v(bp,i) =⊥
UPDATE

Fig. 3. Transition Rules of a Transition System under TSO. The conditions above the horizontal
line are the “pre-condition” that decide whether this transition can be triggered and those below
the line are the “post-condition” that decide what the next configuration should be. For a more
clear presentation, in the post-condition of the rules defined in this paper (including those in the
other sections), we focus only on the component that has been changed. For the components that
has not been changed, we assume implicitly that the primed version (the component in the next
configuration) is equal to the non-primed version (the same component in the current configura-
tion). For example, for all shared variables x ∈ XS, if M′(x) has not been assigned a value in the
rule, we assume implicitly M′(x) = M(x).

READ-B rule: When op=read(x, v), if the buffer of p contains write operations to x,
we read the value of the last write operation to x in p’s buffer. We use Contain(x) as a
shorthand for (∃i ∈N .Bx(bp,i) = x), or, informally, there exists some write operations
to x in the buffer. We use LastWrite(x) to denote the most recent value written to x in the
buffer of p. Formally, LastWrite(x) =Xv(bp,i), where i=Max({ j ∈N |Bx(bp, j) = x}).
READ-M rule: When op=read(x, v), if the buffer of p does not contain write opera-
tions to x, we read the value of x from the memory.
WRITE rule: When op=write(x, v), we put the operation (x,v) to the end of the buffer.
We use |Bp| to denote the length of the buffer of p. Notice that this number equals
the index of the most recent operation in p’s buffer. Formally, |Bp| = Max({j ∈ N |
Bx(bp,j) 6=⊥}∪{0}).
FENCE rule: When op=fence, the transition can be executed only when the buffer of
p is empty. Here we use the predicate Empty as a shorthand for Bx(bp,1) =⊥.
ARW rule: When op=arw(x,v,w), the transition can be executed only when the buffer
of p is empty and the value of x in the memory equals the value of v in p. When it is
executed, the value of x in the memory is immediately changed to the value of w in p.
UPDATE rule: The write operations in the buffer can be at any time nondeterministi-
cally delivered to the memory. This is handled by implicitly adding self-loop transitions

l
update−−−−→ l from all the locations in Q. Notice that the transition l

update−−−−→ l is internal, i.e.,
it never appears explicitly in the definition of the concurrent system. In this rule, the
oldest operation in p’s buffer (the one with index 1) will be used to update the memory
while all the other operations in the buffer are shifted one step closer to the memory,
i.e., their indices are reduced by 1.



ASSIGN rule: When op = (v := e), where e is a Presburger expression over XL, we
update the value of v to the evaluation of e under the assignment L (denoted as e[L]).
GUARD rule: When op = (e1 ◦ e2), where e1 and e2 are Presburger expressions over
XL, the transition can be executed only when (e1[L] ◦ e2[L]) holds, i.e., the evaluations
of e1 and e2 under L is in the binary relation ◦. Here we let ◦ ∈ {>,=,<}.

3.4 The Reachability Problem

The problem of verifying safety properties can be reduced to reachability problems.
We use cinit to denote the initial configuration (defined in Section 3.2) and assume
that a partial function Bad : P→ Q is given. We use CBad to denote the set of bad
configurations {(M,L, pc,Bx,Bv) | ∀p ∈ P.Bad(p) =⊥∨ pc(p) = Bad(p)}. Intuitively,
taking a mutex problem of processes p1, p2, and p3 as an example. If we want to
describe the property that p1 and p2 cannot enter their critical sections at the same
time, we define Bad(p1) = lcs1∧Bad(p2) = lcs2∧Bad(p3) =⊥, where lcs1 and lcs2 are
the locations of the critical sections. The reachability problem of a concurrent system
under TSO asks if there exists some configuration in CBad reachable from the initial
configuration cinit following the transition rules described in Fig. 3. We say that the
concurrent system is “correct” iff all configurations in CBad are not reachable from
cinit . Notice that we can extend this approach to allow finitely many bad functions
Bad1 : P→ Q, . . . ,Badm : P→ Q. In this case, the set of bad configurations becomes
{(M,L, pc,Bx,Bv) |

∨
1≤i≤m∀p ∈ P.Badi(p) =⊥∨ pc(p) = Badi(p)}.

m1 m2 . . . mk x

m1 m2 . . . mk (x,5)

m1 m2 . . . mk (x,5)

m1 m2 . . . mk (x,5)

encodes

Arbitrary sequence of write
operations on x with the last
operation (x,5)

The most recent value of x in the
buffer of p is 5, i.e., R(lwp,x) =
5.

..
.

Fig. 4. A k-abstract buffer and the TSO buffer it encodes.

4 k-Abstraction

Notice that the store buffers under TSO may grow infinitely large. Therefore, a naive
algorithm that exhaustively explores all reachable configurations would not work. One
way to deal with the problem is to find a proper finite abstraction of the buffer. In this
section, we introduce a finite abstraction technique of the buffer and the corresponding



abstract transition system [15]. We call this technique k-abstraction (for a given integer
k). The basic idea is that, for a buffer with more than k write operations, we keep only
the oldest k operations and assume that any operation can appear in the buffer after
these k operations. To be more specific, for the operations with index larger than k, we
only use (1) a set to record the variable part of those write operations together with
(2) a function to record the most recent value of each shared variable in the buffer and
abstract away other information. In Fig. 4, we illustrate the relation between a k-abstract
buffer and the set of TSO buffers it encodes.

4.1 Definitions and Notations

In the sequel, we refer to the transition system induced from the concurrent system un-
der TSO as “TSO system” and the system after k-abstraction as “k-abstract system”.
As a consequence, we call a configuration, a buffer, and a transition in the TSO system
a “TSO configuration”, a “TSO buffer”, and a “TSO transition”, respectively. We call
a configuration, a buffer, and a transition in a k-abstract system a “k-abstract config-
uration”, a “k-abstract buffer”, and a “k-abstract transition”, respectively. In a similar
manner, to the case of buffer variables, for a process p∈ P and a shared variable x ∈ XS,
we use the variable lwp,x to refer to the value of the last write operation to x in the buffer
of p. Let XLW = {lwp,x | p ∈ P∧ x ∈ XS}.

4.2 k-Abstract Configurations

Formally, a k-abstract configuration is a tuple (M,L, pc,Bx,Bv,S,R), where M, L, pc,
Bx,and Bv are defined in the same way as in a TSO configuration, S : P→ 2XS records,
for each process in P, the set of variables in the TSO buffer with index larger than k,
and R : XLW → Z is a partial function that records the most recent value of each shared
variable in the buffer.

In the rest of this section, we introduce the two functions γk (concretization) and
αk (abstraction) that relate k-abstract configurations and TSO configurations. Here we
only give an informal description of these two functions and leave the formal definition
to the appendix.

Given a k-abstract configuration ck, the function γk(ck) maps the k-abstract config-
uration ck to a set CT SO of TSO configurations it encodes. A TSO configuration cT SO
in CT SO has the same memory, valuation to local variables, and locations as cs. The
relation between the buffers of ck and cT SO can be best explained using Fig.4. If the
buffer of ck is the k-abstract buffer on the left of Fig.4, then the buffer of cT SO is one of
the TSO buffers on the right. Similarly, given a TSO configuration cT SO, the function
αk(cT SO) maps it to a k-abstract configuration ck with the same memory, valuation to
local variables, and locations. The relation between their buffers can again be explained
using Fig.4. The buffer of cT SO corresponds to one of the buffers on the right of Fig. 4.
After k-abstraction, we should obtain the k-abstract buffer on the left of Fig.4.

4.3 k-Abstract Transition Relation

Assume that we have l
op−−→p l′ in the concurrent system S . There exists a k-abstract

transition from a k-abstract configuration (M,L, pc,Bx,Bv,S,R) to the other k-abstract



configuration (M′,L′, pc′,B′x,B
′
v,S
′,R′) if the following holds (1) pc(p) = l, pc′(p) = l′,

∀q ∈ P.q 6= p→ pc(q) = pc′(q) and (2) one of the k-abstract transition rules (Fig.5)
holds.

|Bp|= k∨S(p) 6= /0

R′(lwp,x) = L(v) S′(p) = S(p)∪{x}
WRITE-G

|Bp|= i < k S(p) = /0

B′x(bp,i+1) = x B′v(bp,i+1) = R′(lwp,x) = L(v)
WRITE-L

|Bp|= i 6= 0 Bx(bp,1) = x1 . . .Bx(bp,i) = xi Bv(bp,1) = v1 . . .Bv(bp,i) = vi

M′(x1) = v1 B′x(bp,1) = x2 . . .B′x(bp,i−1) = xi B′v(bp,1) = v2 . . .B′v(bp,i−1) = vi B′x(bp,i) = B′v(bp,i) =⊥
UPDATE-NE

x ∈ S(p) |Bp|= 0

M′(x) = M′(x)
UPDATE-AM

x ∈ S(p) |Bp|= 0

M′(x) = R(lwp,x) S′(p) = S(p)\{x}
UPDATE-AS

Fig. 5. k-Abstract Transition Rules. We list only rules that are different from the rules in Fig.3.

READ-B, READ-M, FENCE, ARW, ASSIGN, GUARD rules: For op = read(x,v),
the rule of k-abstract transitions is almost the same as the one of TSO transitions. The
only exception is that the definition of the predicate Contain(x) should be changed to
(x∈ S)∨(∃i∈N .Bx(bp,i)= x) and LastWrite(x)=R(lwp,x). The case of op= f ence or
op= arw(x,v,w) can be handled in a similar way. We only need to change the definition
of Empty to (Bx(bp,1) =⊥∧S(p) = /0). The case of local operations op = (v := e) and
op = (e1 ◦ e2) can be handled by exactly the same rule as in a TSO transition.
WRITE rules: When op = write(x,v), we need to consider the cases where the size of
the abstract buffer is less than k (WRITE-L) and equal to or greater than k (WRITE-
G). When the size is smaller than k, it behaves the same as in the TSO system. For the
case that the size is equals to or greater than k, we (1) modify the record of the last write
operation of x and (2) add x to the set S(p).
UPDATE rules: When op = update, different cases have to be considered. When the
k-bounded buffer is not empty, i.e., B(bp,1) 6=⊥ (UPDATE-NE), the oldest operation in
the buffer (the one with index 1) is sent to the memory and all the other operations in the
buffer are shifted one step closer to the memory. For the case that the k-bounded buffer is
empty, i.e., B(bp,1) =⊥, but the k-abstract buffer is already an over-approximation, i.e,
S(p) 6= /0, there are two possible sub-cases. One is when the corresponding TSO buffer
has more than one operation on x (UPDATE-AM) and one is when the TSO buffer has
only one operation on x left (UPDATE-AS). For the former case, the update operation
may change the memory value of any variables in S(p) to any value in Z. Hence we do
not need any constraint on M′(x) and put a tautology M′(x) = M′(x) to show that the
value of x in the memory has been changed. For the latter case, since only one write
operation to x is left in the buffer, the most recent and the oldest write operation to x in
the buffer coincide. Therefore, the update operation changes the memory value of the
variable x in S(p) to R(lwp,x).



5 Combined Abstraction

The elements in a k-abstract state (M,L, pc,Bx,Bv,S,R) can be categorized into two
parts. The data components include M, L, Bv, R, which are assignments to variables
ranging over Z, and the rest belongs to the control components. Since the numbers of
shared variables |XS|, processes |P|, locations of each process |Q|, and the lengths of the
k-bounded buffers are finite, there exists only a finite number of different control com-
ponents. However, this is not the case for data components. Since the data domain Z is
an infinite set, there exists an infinite number of different data components. It follows
that the number of possible configurations can be infinite. In this case, the reachability
problem becomes non-trivial. One possible solution is to also apply abstraction tech-
niques on data in order to get a finite abstraction of reachable configurations. Then the
reachability problem can be solved by simple depth first or breadth first search algo-
rithms. In this section, we will demonstrate how to use predicate abstraction to form a
finite abstraction of the data components and how k-abstraction and predicate abstrac-
tion are combined.

5.1 Definitions and Notations

We have X = XS ∪XL ∪XB ∪XLW , the set of all integer variables in the k-abstract sys-
tem (recall that XS,XL,XB,XLW , is the set of shared, local, buffer, and last-write vari-
ables, respectively). Given a formula e, we define the substitution operation e[x/x′]
as the formula obtained by replacing all free occurrences of x in e with x′. Given a
set of variables X = {x1, . . . ,xn}, we use X ′ to denote the primed version of X , i.e.,
X ′ = {x′ | x ∈ X}. If X and X ′ are two disjoint sets, we write e[x/x′]x∈X as a shorthand
for e[x1/x′1][x2/x′2] . . . [xn/x′n], i.e., replacing all free occurrences of elements x ∈ X ap-
pearing in e with their new variants x′. In the paper, we refer to a transition system on the
combined abstraction domain as a “comb-abstract system”. As a consequence, we call
a configuration, a buffer, and a transition in a comb-abstract system a “comb-abstract
configuration”, a “comb-abstract buffer”, and a “comb-abstract transition”, respectively.

5.2 The Idea

The idea of predicate abstraction is to use predicates over variables in X to partition
the data components of k-abstract configurations into finitely many parts. Each parti-
tion may encode an infinite number of different data components. An example can be
found in Fig.6. In the figure on the left, we abstract the data components by a predicate
f = (x > y∧bp,4 = t∧ lwp,y = t) while we store the control component exactly. We call
the result a comb-abstract configuration. In the example, the comb-abstract configura-
tion encodes k-abstract configurations with the same control components and with data
components satisfying the constraint defined in the predicate f . Taking the k-abstract
configuration (M,L, pc,Bx,Bv,S,R) 4 on the top-right of Fig 6 as an example, it has the

4 Recall that S : P→ 2XS records, for each process in P, the set of variables in the TSO buffer
with index larger than k, and R : XLW → Z is a partial function that records the most recent
value of each shared variable in the buffer.



f =x > y ∧ bp,4 = t ∧ lwp,y = t

x y x x x,y ← q:
pc = l4

x y y y ← p:
pc = l3

R(lwq,x) = 2, R(lwq,y) = 1

R(lwp,x) = 1, R(lwp,y) = 4

x = 8
y = 7

(x,3) (y,2) (x,7) (x,2) x,y ←
q:
u = 2
v = 5
pc = l4

(x,1) (y,4) (y,7) (y,4) ←
p:
s = 3
t = 4
pc = l3

R(lwq,x) = 5, R(lwq,y) = 5

R(lwp,x) = 3, R(lwp,y) = 2

x = 4
y = 3

(x,5) (y,1) (x,3) (x,3) x,y ←
q:
u = 4
v = 3
pc = l4

(x,3) (y,4) (y,5) (y,2) ←
p:
s = 5
t = 2
pc = l3

..
.

k-Abstract Configurations

Comb-Abstract Configuration

encodes

Fig. 6. A comb-abstract configuration and the k-abstract configurations it encodes. Here XS =
{x,y} and XL = {s, t,u,v}. All the configurations in the figure have the same control components
pc, Bx, and S, where pc(p) = l3 ∧ pc(q) = l4, Bx(bp,1) = Bx(bq,1) = Bx(bq,3) = Bx(bq,4) = x∧
Bx(bp,2) = Bx(bp,3) = Bx(bp,4) = Bx(bq,2) = y, and S(p) = /0∧S(q) = {x,y}.

same control components as the comb-abstract configuration on the left. By substituting
x and y in f with M(x) and M(y), t with L(t), bp,4 with Bv(bp,4), lwp,y with R(lwp,y),
we obtain the formula 8 > 7∧ 4 = 4∧ 4 = 4, which evaluates to true. Hence it is a
k-abstract configuration encoded by the comb-abstract configuration.

5.3 Comb-Abstract Configurations

Formally, a comb-abstract configuration is a tuple ( f , pc,Bx,S), where f is a formula
over X that encodes data components, and the control components pc, Bx, S are defined
in a similar manner as in a k-abstract configuration. Given a k-abstract configuration
ck = (M,L, pc,Bx,Bv,S,R) and a formula f over X , we define the evaluation of f in
ck, denoted as f [ck], as the value obtained by substituting all free occurrences of x ∈ XS
in f with M(x), v ∈ XL in f with L(v), b ∈ XB in f with Bv(b), and lw ∈ XLW in f
with R(lw). Given a comb-abstract configuration cc = ( f , pc,Bx,S), we define the con-
cretization function γc(cc) = {ck = (M,L, pc,Bx,Bv,S,R) | f [ck]}. Given a set of comb-
abstract configurations Cb, we define γc(Cb) =

⋃
cb∈Cb

γc(cb). Given a set of k-abstract
configurations Ck, we use αc(Ck) to denote the set of comb-abstract configurations that
encodes exactly Ck, i.e., Ck = γc(αc(Ck)).



5.4 Predicate Abstraction

Let f be a formula over X and P a set of predicates over X . Each predicate in P parti-
tions the valuation of variables in X into two parts. For each predicate π ∈ P such that
f → π is valid, or equivalently, f ∧¬π is unsatisfiable, π characterizes a superset of data
components of those characterized by f . The predicate abstraction function αpa( f ,P )
returns a conjunction of all predicates π ∈ P such that f → π is valid.

5.5 Comb-Abstract Transition Relation (w.r.t a Set of Predicates P )

Assume that we have l
op−−→p l′ in the concurrent system S . There exists a comb-abstract

transition w.r.t. P from the comb-abstract configuration ( f , pc,Bx,S) to a next configu-
ration (αpa( f ′,P ), pc′,B′x,S

′) if the following hold (notice that we always apply predi-
cate abstraction to the formula f ′ of the next configuration): (1) pc(p) = l, pc′(p) = l′,
∀q ∈ P.q 6= p→ pc(q) = pc′(q), (2) f ′ is satisfiable, and (3) at least one of the comb-
abstract transition rules in Fig.7 is satisfied.

¬Contain(x)

f ′ = (∃X . f ∧ v′ = x∧Equ(X \{v}))[x′/x]x′∈X ′
READ-M

Contain(x)

f ′ = (∃X . f ∧ v′ = lwp,x ∧Equ(X \{v}))[x′/x]x′∈X ′
READ-B

|Bp|= k∨S(p) 6= /0

f ′ = (∃X . f ∧ lw′p,x = v∧Equ(X \{lw′p,x}))[x′/x]x′∈X ′ S′(p) = S(p)∪{x}
WRITE-G

|Bp|= i < k S(p) = /0

f ′ = (∃X . f ∧b′p,i = lw′p,x = v∧Equ(X \{bp,i, lwp,x}))[x′/x]x′∈X ′ B′x(bp,i) = x
WRITE-L Empty

FENCE
Empty

f ′ = (∃X . f ∧ x = v∧ x′ = w∧Equ(X \{x}))[x′/x]x′∈X ′
ARW

|Bp|= i 6= 0 Bx(bp,1) = x1 . . .Bx(bp,i) = xi

B′x(bp,1) = x2 . . .B′x(bp,i−1) = xi B′x(bp,i) =⊥
f ′ = (∃X . f ∧ x′1 = bp,1 ∧

∧
1≤k≤i−1 b′p,k = bp,k+1 ∧Equ(X \{x1,bp,1, . . . ,bp,i−1}))[x′/x]x′∈X ′

UPDATE-NE

x ∈ S(p) |Bp|= 0

f ′ = (∃X . f ∧Equ(X \{x}))[x′/x]x′∈X ′
UPDATE-AM

x ∈ S(p) |Bp|= 0

f ′ = (∃X . f ∧ x′ = lwp,x ∧Equ(X \{x}))[x′/x]x′∈X ′ S′(p) = S(p)\{x}
UPDATE-AS

f ′ = (∃X . f ∧ v′ = e∧Equ(X \{v}))[x′/x]x′∈X ′
ASSIGN f ∧ (e1 ◦ e2)}

GUARD

Fig. 7. Comb-Abstract Transition Rules. We use the predicate Equ(V ) to denote
∧

v∈V v′ = v, i.e.,
no change made to variables in V in this transition. We assume all bounded variables are renamed
to fresh variables that are not in X ∪X ′ so the substitution will not assign the names of bounded
variables to some free variable.

6 The Reachability Checking Algorithm

Alg.1 solves they reachability problem of a comb-abstract system derived from a given
concurrent system. The inputs of the algorithm include a value k, a set of predicates
P , a concurrent system S = (P,A,XS,XL), and a partial function Bad : P → Q. We



Algorithm 1: Reachability Algorithm
Input : S = (P,A,XS,XL), an integer k, a set of predicates P , a partial function Bad : P→ Q
Output: Either the program is safe or a counterexample ce

1 cinit = (true, pc,Bx,S), where ∀p ∈ P.(pc(p) = qinit
p ∧S(p) = /0)∧∀b ∈ XB.Bx(b) =⊥;

2 Next:={(cinit ,ε)}, Visited:= /0;
3 while Next 6= /0 do
4 Pick and remove ((pd, pc,Bx,S),ce) from Next;
5 if ∀p ∈ P.Bad(p) 6=⊥→ pc(p) = Bad(p) then return ce is a counterexample;
6 if ∃( f , pc,Bx,S)∈Visited then replace it with ( f∨pd, pc,Bx,S) else add (pd, pc,Bx,S) to Visited;

7 foreach l
op−→p l′ such that pc(p) = l do

8 foreach comb-abstract transition rule r do
9 compute the next configuration (pd′, pc′,B′x,S

′) of (pd, pc,Bx,S) w.r.t l
op−→p l′, r, and P ;

10 if ¬(∃( f , pc′,B′x,S
′)∈Visited s.t. pd′→ f ) then

11 add ((pd′, pc′,B′x,S
′),ce · (l op−→p l′,r)) to Next;

12 return The program is safe;

first generate the initial comb-abstract configuration cinit = (true, pc,Bx,S), where ∀p∈
P.(pc(p) = qinit

p ∧S(p) = /0)∧∀b ∈ XB.Bx(b) =⊥.
For the reachability algorithm, we maintain two sets, Next and Visited (Line 2).

Next contains pairs of a comb-abstract configuration c and a path that leads to c. Vis-
ited contains comb-abstract configurations that have been visited. Notice that Visited
stores comb-abstract configurations in an efficient way; if both the comb-abstract con-
figurations ( f1, pc,Bx,S) and ( f2, pc,Bx,S) should be put into Visited, we put ( f1 ∨
f2, pc,Bx,S) instead. When Next is not empty (Line 3), a pair ((pd, pc,Bx,S),ce) is
removed from Next and the algorithm tests if (pd, pc,Bx,S) encodes some bad TSO
configurations (Line 5). For the case that it does, the algorithm stops and returns ce as
a counterexample. Otherwise (pd, pc,Bx,S) is merged into Visited (Line 6). Then the
reachability algorithm explores the next configurations of (pd, pc,Bx,S) w.r.t the tran-
sitions in S and the comb-abstract transition rules (Lines 7-11). Once Next becomes
empty, the algorithm reports that the program is safe. Notice that in the counterexample
ce, we record not only the sequence of transitions of S but also the sequence of transi-
tion rules that have been applied. We need this in order to remove non-determinism in
the comb-abstract system and thus simplify the counterexample analysis. To be more
specific, assume that l

op−→p l′ and a comb-abstract configuration c is given, it is possible
that there exists more than one transition rules that can be applied and thus the same
transition l

op−→p l′ may lead to two different comb-abstract configurations. For exam-
ple, assume that op = update and the length of the TSO buffer is larger than k. It could
happen that both of the rules UPDATE-AM and UPDATE-AS can be applied. Then
the current comb-abstract configuration c may have two different next comb-abstract
configurations w.r.t the same transition l

op−→p l′.

7 Counter Example Guided Abstraction Refinement

The counterexample detected by the reachability checking algorithm is a sequence of
pairs in the form of (δ,r), where δ is a transition in S and r is a comb-abstract transition
rule. Let ce=(l1

op1−−→p1 l′1,r1)(l2
op2−−→p2 l′2,r2) . . .(ln

opn−−→pn l′n,rn) be the counterexample



returned from the reachability module. We next analyze ce and decide how to respond
to it. Four possible responses are described in Fig.1.

Case (1): We will not formally define the transition system induced from the concurrent
system under sequential consistency (SC) model for lack of space. Informally, under
the SC model, all operations will be immediately sent to the memory without buffering.
We simulate ce under SC and if ce is feasible under SC, ce is not a bug caused by the
relaxation of the memory model. In this case, it cannot be fixed by just adding fences.
The algorithm reports that ce is a bug of the concurrent system under the SC model.

Case (2): We can check if the counterexample ce is feasible under TSO by simulat-
ing it on the TSO system following the rules defined in Fig. 3. For the case that ce is
infeasible under SC, but feasible under TSO, we can find a set of fences that can help
to remove the spurious counterexample ce by the following steps. First we add fences
immediately after all write operations in ce. We then repeatedly remove these newly
added fences while keeping it infeasible under the TSO system. We do this until we
reach a point where removing any fences would make ce feasible under TSO. In such
case, the subsequently remaining such fences are those that need to be added. A more
efficient algorithm of extracting fences from error traces can be found in [2].

Case (3): When ce is infeasible under TSO, but feasible under k-abstraction, we keep
increasing the value of k until we reach a value i such that ce is feasible under (i-1)-
abstraction, but infeasible under i-abstraction. In such case, we know that we need to
increase the value of k to i in order to remove this spurious counterexample. Such a
value i always exists, because the length of the sequence ce is finite, which means that
it contains a finite number of write operations, say n operations, and thus the size of
the buffer will not exceed n. When we set k to n, then in fact the behavior of ce will
be the same under TSO and under k-abstraction. It follows that it is infeasible under
k-abstraction when k equals n.

Case (4): When ce is infeasible under k-abstraction, but is feasible in the comb-
abstract system, it must be the case that predicate abstraction made a too coarse over-
approximation of the data components and has to be refined. An example can be found
in Fig. 8, where g0 (respectively, f0) characterizes the data components of the ini-
tial k-abstract configuration (respectively, comb-abstract configuration) and gi (respec-
tively, fi) characterizes the data components of the k-abstract configuration (respec-
tively, comb-abstract configuration) after i steps of ce are executed. The rule r3 has a
precondition on data components such that g2 cannot meet this condition, but f2 can
(note that this can happen only when r3 is a GUARD rule or an ARW rule). This situa-
tion arises because the predicate abstraction in the first 2 steps of ce made a too coarse
over-approximation. That is, some data components encoded in f2∧¬g2 that satisfy the
pre-condition of transition rule r3 are produced from the predication abstraction. In or-
der to fix the problem, we have to find some proper predicates to refine f0, f1, and f2 so
the ce cannot be executed further after 2 steps in the comb-abstract system. Hence we



have to generate some more predicates to refine the comb-abstract system. This can be
done using the classical predicate extraction technique based on Craig interpolation [7].

f4f3

op4,r4

f2

g2
op3,r3

f1

g1
op2,r2

f0

g0
op1,r1

Fig. 8. Data components produced by ce.

8 Discussion

How to generalize the proposed technique? The proposed technique can be gener-
alized to memory models such as the partial store order memory model or the power
memory model. Such models use infinite buffers and one can define finite abstractions
by applying the k-abstraction technique [15]. Predicate abstraction and counterexample
analysis can be done in the same way as we described in this paper. The Presburger ex-
pressions used in this paper can also be extended to any theory for which satisfiability
and interpolation are efficiently computable. Notice that although the formula f ′ in the
comb-abstract transtion rules has existential quantifiers, we do not need to assume that
quantifier elimination is efficiently computable for the given theory. This is because in
predicate abstraction, for a given predicate π, instead of checking whether f ′ → π is
valid, we check if f ′∧¬π is unsatisfiable. For satisfiability checking, we can ignore the
outermost existential quantifiers in f ′.

Further optimizations. Assume that two local variables v,u of process p and a predi-
cate v < u describing their relation are given. When the size of the buffer of p is k and
p executes the operation write(x,v), the value of the buffer variable bp,k+1 will be as-
signed to the value of v. Then the relation v < u should propagate to the buffer variable
and hence we should also have bp,k+1 < u. However, in order to generate this predicate,
it requires another counterexample guided abstraction refinement iteration. It would re-
quire even more loop iterations for the relation v < u to propagate to the variable x and
generate the relation x < u. Notice that for such situations, the “shapes” of the predi-
cates remain the same while propagating in the buffer. Based on this observation, we
propose an idea called “predicate template”. In this example, instead of only keeping
v < u in the set P of predicates, we keep a predicate template � < �. The formulae
returned by the predicate abstraction function αpa( f ,P ) are then allowed to contain
predicates x0 < x1 for any x0,x1 ∈ X s.t. f → x0 < x1 is valid. We call predicates in this
form parameterized predicates.



Modules in the Framework Our framework is in fact flexible. The k-abstraction can
be replaced with any abstraction technique that abstracts the buffers to finite sequences.
E.g., instead of keeping the oldest k operations in the buffer, one can also choose to keep
the newest k operations and abstract away others. For the integer variable, instead of ap-
plying predicate abstraction techniques, we also have other choices. In fact, a k-abstract
system essentially can be encoded as a sequential program with integer variables run-
ning under the SC model. Then one can choose to verify it using model checkers for
sequential programs such as BLAST or CBMC.

9 Experimental Results

LOC Time Fences/proc # Predicates
1. Burns [19] 9 0.02 s 1 1
2. Simple Dekker [24] 10 0.04 s 1 1
3. Full Dekker [12] 22 0.06 s 1 1
4. Dijkstra [19] 22 0.35 s 1 4
5. Lamport Bakery [16] 20 154 s 2 17
6. Lamport Fast [17] 32 2 s 2 4
7. Peterson [21] 12 2 s 1 6
8. Linux Ticket Lock2 16 2 s 0 2

Table 1. Experimental results

We have implemented the method de-
scribed in this paper in C++ geared
with parameterized predicates. Instead
of keeping the oldest k operations in the
buffer, we choose to keep the newest k
operations and abstract away older op-
erations. In the counter-example guided
refinement loop, for Case 2 (fence
placement) we use the more efficient al-
gorithm described in [2].

We applied it to several classical
examples. Among these examples, the
Lamport Bakery and Linux Ticket Lock involves integer variables whose values can
grow unboundedly. To our knowledge, these examples cannot be handled by any exist-
ing algorithm. The experiments were run on a 2.27 GHz laptop with 4 GB of memory.
The MathSat4 [1] solver is used as the procedure for deciding satisfiability and com-
puting interpolants. All of the examples involve two processes. The results are given in
Table 1. For each protocol we give the total number of instructions in the program, the
total time to infer fence positions, the number of necessary fences per process, and the
greatest number of parameterized predicates used in any refinement step.
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A Abstraction and Concretization Functions for k-abstraction

Given a k-abstract configuration ck = (M,L, pc,Bx,Bv,S,R). Let |Bp| = Max({i ∈ N |
Bx(bp,i) 6=⊥}∪{0}) denote the length of the buffer of process p, as encoded by Bx and
Bv. We define LastWritep(x,B′x,B

′
v) = B′v(bp,i), where i = Max({ j ∈ N | B′x(bp, j) =

x}) and the last write constraint LW (p,ck,B′x,B
′
v) = ∀x ∈ S(p).LastWritep(x,B′x,B

′
v) =

R(lwp,x). Let the buffer constraint BC(p,m,ck,B′x,B
′
v) equal the following

∀0 < i≤ |Bp|.(B′x(bp,i) = Bx(bp,i)∧B′v(bp,i) = Bv(bp,i))
∧

S(p) 6= /0→


∀x ∈ S(p).∃|Bp|< i < m.B′x(bp,i) = x

∧
∀|Bp|< i < m.(B′x(bp,i) ∈ S(p)∧B′v(bp,i) 6=⊥)

∧
∀m≤ i.(B′x(bp,i) = B′v(bp,i) =⊥)


∧

S(p) = /0→ (∀|Bp|< i.(B′x(bp,i) = B′v(bp,i) =⊥))

We use γk(ck) to denote the set of TSO configurations encoded in ck, which equals
the set {(M,L, pc,B′x,B

′
v) | ∀p ∈ P.((∃m ∈N .BC(p,m,ck,B′x,B

′
v))∧LW (p,ck,B′x,B

′
v))}

On the other hand, given a TSO configuration cT SO = (M,L, pc,Bx,Bv), we define
αk(cT SO) = (M,L, pc,B′x,B

′
v,S,R), where (1) ∀0 < i ≤ k, p ∈ P.(B′x(bp,i) = Bx(bp,i)∧

B′v(bp,i) = Bv(bp,i)), (2) ∀k < i, p ∈ P.((Bx(bp,i) 6=⊥→ Bx(bp,i) ∈ S(p))∧ (B′x(bp,i) =
B′v(bp,i) =⊥)), and (3) ∀p ∈ P,x ∈ XS.R(lwp,x) = LastWritep(x,Bx,Bv).


