
BULL: a Library for Learning Algorithms of
Boolean Functions

Yu-Fang Chen and Bow-Yaw Wang

Academia Sinica, Taiwan

Abstract. We present the tool BULL (Boolean fUnction Learning Li-
brary), the first publicly available implementation of learning algorithms
for Boolean functions. The tool is implemented in C with interfaces
to C++, JAVA and OCAML. Experimental results show significant
advantages of Boolean function learning algorithms over all variants of
the L∗ learning algorithm for regular languages.

Web-site: http://bull.iis.sinica.edu.tw/

1 Introduction

BULL is the first publicly available implementation of learning algorithms for
Boolean functions. Three learning algorithms are implemented in the library.
The classical CDNF algorithm infers Boolean functions over a fixed number of
variables. The incremental CDNF+ and CDNF++ algorithms infers Boolean
functions over an indefinitely number of variables. The library is implemented in
C with C++, JAVA and OCAML interfaces. Sample codes of C, C++, JAVA,
and OCAML are distributed with the library. Users can adopt BULL by modi-
fying them.

What is it? Learning algorithms for Boolean functions can be viewed as an
efficient procedure to generate a target Boolean function only known to a teacher.
This type of learning algorithms assume a teacher who can answer queries about
the target Boolean function. The learning algorithms acquire information from
the answers to queries and organize them in a systematic way. In the worst case,
learning algorithms will infer a target Boolean function within a polynomial
number of queries in the CNF and DNF formula sizes of the target function.

Learning in formal verification. Since the work in [9], algorithmic learning
has been applied to formal verification techniques such as specification synthe-
sis [9], automated compositional verification [5], and regular model checking [6].
Most applications are based on the L∗ automata learning algorithm for reg-
ular languages. The learning algorithm enumerates states explicitly, hence its
applications are inherently explicit [5], or use explicit automata as implicit rep-
resentations of state spaces [6].

Why use Boolean learning. Implicit algorithms (e.g., SAT-based model
checking) can greatly improve the capacity of various verification techniques.

Similar improvements have also been reported in applications of the CDNF learn-
ing algorithm for Boolean functions. In [3], the learning algorithm is adopted to
infer implicit contextual assumptions in automated compositional reasoning. It
is shown that learning implicitly can tackle certain hard problems unattainable
by traditional explicit algorithms. The CDNF algorithm is also applied to loop
invariant generation. The learning-based framework can be much more efficient
than conventional static analysis algorithms [7].

For learning algorithms for regular languages, there are mature and publicly
available tools (such as libalf [1] and learnlib [10]). Implementations of learning
algorithms for Boolean functions however are still missing. Since it would take a
considerable amount of time to understand and implement learning algorithms
for Boolean functions, lack of publicly available tools could be an obstacle to
develop related techniques in the research community. In order to lower the
barrier to entry, we decide to develop the BULL library.

The Position of the Paper The Boolean learning project starts in 2009
and since then we tested different variants of the algorithms and data struc-
tures. Several of them indeed dramatically improved the performance, e.g., non-
membership queries are introduced partly for performance reasons. However,
since boolean learning is a new technique to most people in the community. We
decided to spend the pages for a general introduction instead of technical details.

2 The BULL Library

Learning

Algorithms

CDNF

CDNF+

CDNF++

OCaml
Interface

C
Interface

JAVA
Interface

User

Applications

Mem. Qry.

Non-Mem. Qry.

Equ. Qry.
C++

Interface

Fig. 1. System Architecture

Figure 1 shows the architecture
of BULL. The core library con-
tains three learning algorithms imple-
mented in C. They are the CDNF [2],
CDNF+ [4], and CDNF++ [4] al-
gorithms. The CDNF algorithm as-
sumes that the number of variables in
the target Boolean function is known.
The CDNF+ and CDNF++ algo-

rithms do not have this assumption. In addition to the learning algorithms,
we also provide C++, JAVA (via JNI), and OCaml interfaces.

2.1 How to Use the Package

In order to adopt the learning algorithms in BULL, users have to play the teacher
and answer queries posed by the algorithms. For the sake of presentation, let us
assume that f(x, y, z) = (x ∧ ¬y) ∨ (x ∧ z) is the target Boolean function over
variables x, y, and z. Consider the following sample queries from the learning
algorithms:

1. A membership query on a partial assignment {(x, false)}. On a membership
query, the teacher checks if the target is satisfiable under the given assign-
ment. Here the teacher answers no since f(false, y, z) is not satisfiable.

2. A non-membership query on a parital assignment {(y, true)}. On a non-
membership query, the teacher checks if the negation of the target is satisfi-
able under the assignment. For this example, the teacher answers yes.

2

3. An equivalence query on a conjecture f ′(x, y, z). On an equivalence query,
the teacher answer yes if the given formula is equivalent to the target. Oth-
erwise, she returns an assignment as a counterexample. For this example,
the teacher may return the assignment {(x, true), (y, true), (z, false)} since
f ′(true, true, false) 6= f(true, true, false).

Different learning algorithms pose different types of queries. Table 1 shows the
differences among the three learning algorithms in BULL. The CDNF algorithm

Num. of Vars. Mem. Qry, Non-Mem. Qry. Equ. Qry.

CDNF known
√ √

CDNF+ unknown
√ √

CDNF++ unknown
√ √ √

Table 1. Features of Algorithms

assumes the number of variables in the target Boolean function is known. The
CDNF+ algorithm does not know the number of variables. Both algorithms
only pose membership and equivalence queries. The CDNF++ algorithm does
not presume the number of variables is known. It however pose membership,
non-memberhip, and equivalence queries.

BULL defines the interfaces to the three types of queries. If all queries can
be answered automatically, users can implement a mechanical teacher to an-
swer queries through the interface. Learning algorithms in BULL will invoke the
mechanical teacher and infer unknown target functions automatically. We refer
interested users to the appendix or our web-site for a detailed demonstration of
how to implement the above query functions and connect them to BULL.

2.2 Users of BULL

The BULL library targets the formal verification research community. As far
as we know, several people in the field are interested in the applications of
learning algorithms for Boolean functions. The library has already been used
by the verification group in Oxford University (Learning-based Compositional
Probabilistic Model Checking), the software trustability and verification group
in Tsinghua University (Learning-Based Compositional Verification), and the
static analysis group in Seoul National University (Loop Invariant Inference).
Several other groups have also expressed their interests and asked for the source
code.

2.3 Potential Applications

The CDNF algorithm has been applied to synthesize contextual assumptions
in assume-guarantee reasoning. It has also been used to infer a loop invariant
in program verification. These applications share common characteristics. First,
computing contextual assumptions or loop invariants without learning is possible
but expensive. It is however easy to verify if purported contextual assumptions

3

or loop invariants work. Moreover, contextual assumptions or loop invariants are
by no mean unique. It suffices to compute but one contextual assumption or loop
invariant in these applications. From our experience, we believe that learning is
most suitable for problems with the aforementioned characteristics.

The appendix explains how to use the BULL library to find loop invariants
in details. We hope it may give some insights to more applications of the library.

3 Experimental Results

We have two sets of experiments. In the first one, we compare Boolean and
automata learning algorithms. In the second one, we compare three algorithms
implemented in BULL using random 3SAT formulae.

3.1 Compare Boolean Learning and Automata Learning Algorithms

Compositional verification and fix-point calculation are the two main applica-
tions of algorithmic learning in formal verification. Both automata and Boolean
learning have been used to solve these problems. Since both learning algorithms
can be used for the same problem, we think a comparison between them would
be interesting.

We compare algorithms implemented in BULL with five automata learning
algorithms implemented in libalf [1]. The natures of the two types of learning
algorithms are quite different; the target of automata learning is “a language”
while the target of Boolean learning is more often “a structure” (e.g, a transition
function). It is in general hard to compare them. There exists automata with
complicated structure, but simple language (e.g., an automaton accepts Σ∗ can
have very complicated structure). This type of automata can be easily learned by
automata learning algorithm, but can be extremely hard for Boolean learning.

Since the target application of BULL is verification, we decide to pick a
classical example, n-bit counter, as the target for learning (Table 2). To be more
specific, we use Boolean learning algorithms to target the circuit of a counter and
automata learning algorithms to target the state machine obtained by unfolding
the circuit. In Table 3, we show a different version where the n-bit counter model
can be non-deterministically reset to 0 from any state. We use a timeout period
of 1 hour. Each entry of the table is the execution time in seconds (“TO” denotes
timeout). Each row is the result of an algorithm and each column is the number of
bits used in the counter. From the tables, we can see Boolean learning algorithms
significantly outperform the automata learning algorithms in this type of models.
For example, all of them can infer a 12-bit counter machine model in less than
2 minutes, while the best algorithm implemented in libalf fails to find it within
an hour.

3.2 Compare Boolean Learning Algorithms using 3SAT Formulae

Here we compare the performance of the Boolean learning algorithms using ran-
dom 3SAT formulae of n variables. In those formulae, the ratio of the number of

4

2 3 4 5 6 7 8 9 10 11 12

CDNF 0.02 0.02 0.05 0.11 0.35 1.03 2.29 4.3 9.8 23.6 66.2
CDNF+ 0.01 0.02 0.04 0.09 0.27 0.77 1.5 2.4 5.7 14.1 40.3

CDNF++ 0.01 0.02 0.04 0.09 0.25 0.77 1.5 2.4 5.6 13.8 39.8
Angluin’s L* 0.01 0.03 0.51 73.02 TO TO TO TO TO TO TO

Angluin’s L* (column-based) 0.03 0.08 1.81 316.95 TO TO TO TO TO TO TO
Rivest & Schapire’s 0.02 0.02 0.14 2.47 174.71 TO TO TO TO TO TO

NL* 0.02 0.02 0.17 4.45 215.84 TO TO TO TO TO TO
Kearns & Vazirani’s 0.01 0.02 0.04 0.28 2.47 18.54 96.65 787.7 TO TO TO

Table 2. Comparison of automata and Boolean function learning algorithm: using
n-bit counter as the example

2 3 4 5 6 7 8 9 10 11 12

CDNF 0.00 0.02 0.07 0.24 0.75 2.83 12.13 32.01 112 451 1374
CDNF+ 0.01 0.02 0.06 0.21 0.67 2.63 12.1 36.8 144 637 1671

CDNF++ 0.01 0.02 0.06 0.21 0.62 2.63 12.08 36.88 145 582 1632
Angluin’s L* 0.01 0.02 0.14 2.52 146.11 TO TO TO TO TO TO

Angluin’s L* (column-based) 0.03 0.08 1.78 313 TO TO TO TO TO TO TO
Rivest & Schapire’s 0.01 0.02 0.15 2.64 164.2 TO TO TO TO TO TO

NL* 0.01 0.07 2.14 363.8 TO TO TO TO TO TO TO
Kearns & Vazirani’s 0.01 0.02 0.06 0.45 4.61 33.52 181.5 1486.6 TO TO TO

Table 3. Comparison of automata and Boolean function learning algorithm: using
n-bit counter with non-deterministic reset as the example

variables to the number of clauses is 1/4.1 We use a timeout period of 10 min-
utes. In Figure 2, we show the average execution time of the first 50 non-trivial
instances (satisfiable and all algorithms finished within the timeout period). In
Table 4, we show the number of timeout cases out of 180 instances. At the first
glance, CDNF learning algorithm has the best performance among the three.
However, it is not a fair interpretation for two reasons. First, CDNF makes use
of some information (number of variables in the target function) that is not
known by the other two algorithms. More importantly, in the randomly gener-
ated formulae, almost all the variables will be added to the final result. Hence
the benefit obtained from incremental learning is not significant in such type of
examples.

Num. of Var. 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135

CDNF 0 0 0 0 0 0 1 2 0 14 7 24 28 31 48 51 70 76 90 93
CDNF+ 0 0 0 0 0 0 1 6 5 21 19 42 48 51 83 80 88 99 118 122

CDNF++ 0 0 0 0 0 0 2 4 6 19 16 32 40 45 69 69 82 90 106 109
Table 4. The number of timeout cases out of 180 instances

1 This ratio is very close to satisfiability threshold of 3SAT formulae. Hence the chance
of getting a satisfiable formula is 50%

5

0

100

200

300

400

500

600

700

800

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125

CDNF++ CDNF+ CDNF

Fig. 2. Comparison of Boolean learning algorithms, using random 3SAT formulae as
the benchmark. The vertical axis is the average execution time in seconds and the
horizontal axis is the number of variables in the formula. Each point is the average
results of 50 instances.

References

1. B. Bollig, J.-P. Katoen, C. Kern, M. Leucker, D. Neider, and D. R. Piegdon. libalf:
The automata learning framework. In CAV, LNCS, pages 360–364. Springer, 2010.

2. N. H. Bshouty. Exact learning Boolean function via the monotone theory. Infor-
mation and Computation, 123(1):146–153, 1995.

3. Y.-F. Chen, E. M. Clarke, A. Farzan, M.-H. Tsai, Y.-K. Tsay, and B.-Y. Wang.
Automated assume-guarantee reasoning through implicit learning. In CAV, LNCS,
pages 511–526. Springer, 2010.

4. Y.-F. Chen and B.-Y. Wang. Learning boolean functions increamentally. In CAV,
LNCS, pages 55–70. Springer, 2012.

5. J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning assumptions
for compositional verification. In H. Garavel and J. Hatcliff, editors, TACAS,
volume 2619 of LNCS, pages 331–346. Springer, 2003.

6. P. Habermehl and T. Vojnar. Regular model checking using inference of regular
languages. In ENTCS, pages 21–36, 2005.

7. Y. Jung, S. Kong, B.-Y. Wang, and K. Yi. Deriving invariants in propositional
logic by algorithmic learning, decision procedure, and predicate abstraction. In
G. Barthe and M. V. Hermenegildo, editors, VMCAI, LNCS, pages 180–196.
Springer, 2010.

8. Y. Jung, W. Lee, B.-Y. Wang, and K. Yi. Predicate generation for learning-based
quantifier-free loop invariant inference. In P. A. Abdulla and K. R. M. Leino,
editors, TACAS, volume 6605 of LNCS, pages 205–219. Springer, 2011.

9. O. Maler and A. Pnueli. On the learnability of infinitary regular sets. Information
and Computation, 118(2):316–326, 1995.

10. H. Raffelt, B. Steffen, T. Berg, and T. Margaria. Learnlib: a framework for ex-
trapolating behavioral models. STTT, 11(5):393–407, 2009.

6

A Appendix

The presentation consists of two parts. It will begin with an introduction to the
contents of the library and follow by a demonstration of how to use BULL to
find a loop invariant for a Boolean program.

A.1 The BULL Library

The package can be obtained via SVN:
svn co http://project-bull.googlecode.com/svn/trunk/ project-bull-read-only

(there is a space between “...trunk/” and “project-bull-read-only”). It
consists of the following 6 folders:

Src/core
The core library code in C.

Src/c
Example of a C implementation of an oracle that learns a given boolean
formula.
Example of an oracle that learns a loop invariant of a given boolean program
(will be described in detail in Section A.2).

Src/cpp
Example of a C++ implementation of an oracle that learns a given boolean
formula.

Src/java
Example of a JAVA implementation of an oracle that learns a given boolean
formula.

Src/ocaml
Example of an OCAML implementation of an oracle that learns a given
boolean formula.

Src/solvers
SAT Solvers used by the oracles. Currently we use minisat as the default
solver for C++ and OCaml, SAT4J as the default for JAVA.

dimacs
CNF formulae that can be used as the target functions, most of them are
taken from
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf/.

Compilation We use {BULL-dir} to denote the root folder of BULL. The
easiest way to compile the package is to run the ./build script in the folder
{BULL-dir}. It will automatically compile the solvers, the core library, and or-
acles implemented in different programming languages

Execution Below we show how to run learning algorithms to learn a given
boolean formula using the example oracles implemented in C, C++, OCaml,
and JAVA. We use {Exec} to denote the location of the executables.

7

– For C, {Exec} = {BULL-dir}/Src/c/learn

– For C++, {Exec} = {BULL-dir}/Src/cpp/learn

– For JAVA, {Exec} = {BULL-dir}/Src/java/learn.sh

– For OCaml, {Exec} = {BULL-dir}/Src/ocaml/learn.btye

Users can specify which learning algorithm to use via passing input argu-
ments.

– {Exec} 0 : using the CDNF algorithm
– {Exec} 1: using the CDNF+ algorithm
– {Exec} 2: using the CDNF++ algorithm

The executable reads a target function (a cnf formula in DIMACS format)
from standard input. For example, the command
{BULL-dir}/Src/java/learn.sh 0 < ../../dimacs/small.cnf

using the CDNF learning algorithm to learn a target function that equals
the cnf formula in small.cnf via java interface.

Output The final output of the program is shown in Figure 3. The CDNF algo-
rithm uses 50 membership queries and 45 equivalence queries to get the result.
The result is a formula in the form of conjunction of formulae in disjunctive
normal form (CDNF). Each number in the result formula denote a literal.

Number of Variables Used : 10

{ { { 8 & 3 } | { 8 & 4 & 2 } | { 9 & 5 & 2 } | { 9 & 5 & 3 } | { 10 & 5

& 2 } | { 8 & 4 & 1 } | { 9 & 5 & 4 & 1 } | { 10 & 5 & 4 & 1 } } & { {

-6 } | { 9 & 5 } | { 10 & 5 & 2 } | { 10 & 5 & 4 & 1 } } & { { 9 } | { 10

& 2 } | { -5 } | { 10 & 4 & 1 } } & { { -10 } | { 2 } | { 4 & 1 } } &

{ { -1 } | { 4 } | { 2 } } }

Fig. 3. The final output.

8

A.2 Use BULL to Infer Loop Invariants of a Boolean Program

Loop Invariant for a Boolean Program Given the following frag-
ment of a Boolean program (a program with only Boolean variables):
{pre} while c do S {post}, where S is a sequence of program statements, pre
is the precondition, c is the loop condition, and post is the postcondition. Note
that pre, c, and post are encoded as propositional formulae. A loop invariant
I satisfies the following conditions: (a) pre → I, (b) c ∧ I → Pre(I, S), and
(c) ¬c ∧ I → post. In condition (b), the function Pre(φ, S) returns a weakest
precondition function of φ before the execution of S. Precisely, the execution of
the statement S from any satisfying assignment of Pre(φ, S) ends in a satisfying
assignment of φ. A concrete example is given in Figure 4.

Input: bool x, y
bool t;
{pre : x 6= y}
while x do

t← x;
x← y;
y ← t;

end
{post : x = false ∧ y = true}

For a loop invariant I over variables x
and y, the following three conditions should
hold:

1. x 6= y → I
2. x ∧ I → Pre(I, t← x;x← y; y ← t)
3. ¬x ∧ I → ¬x ∧ y

Recall that the weakest precondition of I
w.r.t. an assignment x← y equals I[x← y],
where the notation [x← y] replaces all free
occurrences of x in I with y.

Fig. 4. A sample Boolean program and its loop invariant

Below we demonstrate how to use BULL to find a proper loop invariant for
the program in Figure 4. Since the number of variables in the invariant is known,
here we choose the CDNF learning algorithm. The CDNF algorithm requires a
teacher that answers equivalence queries and membership queries. An implemen-
tation can be found in the files Src/c/tacas.h and Src/c/tacas.c. Below we
explain how the implementation is done. We first implement two functions, one
for answering equivalence queries and the other for membership queries.

Equivalence Queries For equivalence queries, the teacher only need to check if
an conjecture function I satisfies the above three conditions. In case that I does
not satisfy any of the above three conditions, a counterexample assignment is
returned to the learning algorithm to refine the next conjecture. A pseudo code
for the equivalence query can be found in Algorithm 1. The implementation can
be found in the file Src/c/tacas.c.

9

Input: A boolean formula I
if ¬(x 6= y → I) is satisfiable then

return a satisfying assignment for ¬(x 6= y → I)
end
else if ¬(¬x ∧ I → ¬x ∧ y) is satisfiable then

return a satisfying assignment for ¬(¬x ∧ I → ¬x ∧ y)
end
else if ¬(x ∧ I → I[y ← t][x← y][t← x]) is satisfiable then

return a satisfying assignment for ¬(x ∧ I → I[y ← t][x← y][t← x])
end
else Terminate with the answer I is a proper invariant for the loop;

Algorithm 1: Equivalence query

Membership Queries For a membership query on an assignment v, if v is an
satisfying assignment of formula pre, v is also a satisfying assignment of a correct
invariant due to the condition (a). Thus the teacher returns yes to the learning
algorithm. On the other hand, if v is not a satisfying assignment of the formula
c∨post, it cannot be a satisfying assignment of a correct invariant because of the
condition (c). The teacher hence should return no. If v does not fall in the above
two cases, the teacher cannot decide whether the assignment is included in a
correct invariant or not. It thus returns a yes-or-no answer randomly. A pseudo
code for the membership query can be found in Algorithm 2. The implementation
can be found in the file Src/c/tacas.c.

Input: An assignment v
if v is a satisfying assignment for (x 6= y) then

return yes
end
else if v is not a satisfying assignment for x ∨ (¬x ∧ y) then

return no
end
else

Randomly answer yes or no;
end

Algorithm 2: Membership query

To be more concrete, taking the BULL C interface as an example. The signatures

of the functions implementing the two queries are described in Figure 5 (they
are defined in Src/core/query.h):

The Learner Once the functions for the two kinds of queries are given, we
can use BULL to find an invariant for the given loop. This is done by calling
a function learn using the two query functions as input parameters. To be

10

membership_result_t mymemqry (void *info, bitvector *v);

equivalence_result_t* myequqry (void *info, uscalar_t num_vars,

boolformula_t* c);

Fig. 5. Function signatures of membership and equivalence queries. The field void

*info is used for passing additional information to the queries, e.g., when running
several different instances of BULL at the same time, the field can be used to iden-
tify the difference between instances. The field uscalar t num vars is used for passing
in the number of variables of the candidate boolean function. In this example, this
number should be fixed to a constant 2. membership result t is a boolean value while
equivalence result t contains a boolean value for the yes-or-no answer and a bitvec-
tor to store a counterexample assignment.

more specific, in the C interface, one should call the function learn described
in Figure 6 (defined in Src/core/cdnf.h).

boolformula_t *learn (void *info, uscalar_t num_vars,

membership_t membership, membership_t comembership,

equivalence_t equivalence, int mode);

Fig. 6. Signature the learner function. The field void *info is used for passing ad-
ditional information to the queries and uscalar t num vars is the number of vari-
ables in the target function. The fields membership t membership, membership t

comembership, equivalence t equivalence are pointers to the implemented functions
for membership query, comembership query, and equivalence query, respectively. For
CDNF, CDNF+, CDNF++ learning algorithms, the values of mode should be set to
CDNF, CDNF Plus, CDNF PlusPlus, respectively.

The function learn either return a correct answer or a value NULL to indi-
cate conflict answers received during the learning process. Conflict can happen
because some membership answers are given randomly, an assignment may be
satisfying and unsatisfying in different queries. When such a conflicting assign-
ment is observed, the whole procedure restarts. An implementation of this can
be found in Figure 7. Since the number of variables and hence the number of
queries is bounded, the simple random teacher will find a correct invariant with
probability 1 should such an invariant exist.

Output The final output of the program is shown in Figure 8. Two membership
queries and four equivalence queries were made before getting this invariant. The
result formula in the form of conjunction of formulae in disjunctive normal form.
Inside the program, we map each literal to a number, e.g., below x is mapped to
1 and y to 2. The notation { { { 2 } | { 1 } } } denotes a formula (((y) ∨
(x))).

11

int main(int argc, char *argv[]){

int mode=CDNF;

boolformula_t* c=NULL;

while(c==NULL){

c=learn (NULL, 2,mymemqry,NULL, myequqry, mode);

}

printf(stderr,"\nFinished!\nResult:");

boolformula_print(c);

boolformula_free(c);

return 0;

}

Fig. 7. The main function of the C implementation.

Number of Variables Used : 2

Finished! Number of Mem. Q. =2, Equ. Q. = 4

Result:{ { { 2 } | { 1 } } }

Fig. 8. The final output.

Further Extension The above can be extended to support more general pro-
grams (e.g., with integer variables) through predicate abstraction and automated
predicate refinement [8]. For such applications, the number of predicates needed
for verification is unknown a priori. Algorithms such as CNDF+ and CDNF++
are therefore most suitable for them.

12

