
Commutativity of Reducers

Yu-Fang Chen1, Chih-Duo Hong1, Nishant Sinha2, and Bow-Yaw Wang1

1 Institute of Information Science, Academia Sinica, Taiwan
2 IBM Research, India

Abstract. In the Map-Reduce programming model for data parallel computation in a cloud
environment, the reducer phase is responsible for computing an output key-value pair, given
a sequence of input values associated with a particular key. Because of non-determinism in
transmitting key-value pairs over the network, the inputs may not arrive at a reducer in a
fixed order. This gives rise to the reducer commutativity problem, that is, is the reducer com-
putation is independent of the order of its inputs? Commutativity of reducers is a desirable
property, absence of which may lead to correctness violations and hard-to-find bugs.
In this paper, we study the reducer commutativity problem formally. To model real-world
reducers, we introduce the notion of an integer reducer, a syntactic subset of integer pro-
grams. We show that, in spite of syntactic restrictions, deciding commutativity of integer
reducers over unbounded sequences of integer values is undecidable. It remains undecidable
even with input sequences of a fixed length. The problem, however, is decidable for reduc-
ers over unbounded input sequences if the integer values are bounded. We also propose an
efficient reduction of commutativity checking to conventional assertion checking and re-
port experimental results from checking commutativity using various off-the-shelf program
analyzers.

1 Introduction

Map-Reduce is a widely adopted programming model for data-parallel computation, for example,
in a cloud computing environment. The input data is partitioned into sets of key-value pairs for
parallel computation, for instance, (word, count) for the word counting problem. The computa-
tion consists of two key phases: map and reduce, each of which processes a series of key-value
pairs. Several map and reduce instances may be deployed for a large Map-Reduce computation.
The map phase takes a key-value pair as input and produces zero or more output key-value pairs.
The output pairs produced by multiple concurrent mappers are shuffled by a load-balancing algo-
rithm and delivered to appropriate reducers. The reduce phase iterates through the input values
associated with a particular key and produces an output key-value pair.

Due to the variations in the number of mappers/reducers, load-balancing algorithm and net-
work latency, the order of values received by a reducer is not fixed. If a reducer computes dif-
ferent outputs for different input orders, that is, is not commutative, the Map-Reduce program
may yield different results on different runs. This makes such programs hard to debug and even
cause correctness violations. The commutativity problem for a reducer program R is to check if
the computation of R is commutative over its, possibly unbounded, sequence of inputs. A recent
study [19] found that a large proportion (> 50%) of the analyzed real-life reducers are, in fact,
non-commutative. However, somewhat surprisingly, the problem of checking the commutativity
of reducers has received little attention formally.

At a first glance, the commutativity problem for arbitrary reducers appears to be undecidable
by the Rice’s theorem. Yet reducers are seldom Turing machines in practice. Most real-world
reducers simply iterate through their input sequence and compute their outputs; they do not have

complicated control or data flows. Therefore, one wonders if the commutativity problem for such
reducers can be decided for practical purposes.

On the other hand, because real-world reducers have a simple skeleton, perhaps manual in-
spection is enough to decide if a reducer is commutative? Consider the two reducers dis and
rangesum shown below (in C syntax, simplified by omitting the key input), which reflect the
central computation in many real-world reducers. Both reducers compute the average of a selected
set of elements from the input array x of lengthN and are very similar structurally. However, note
that dis is commutative while rangesum is not: dis selects elements from x which are greater
than 1000, while rangesum selects elements at index more than 1000 for averaging. This shows
that it is tricky to check the commutativity of such reducers manually; automated tool support is
definitely required.

int dis (int x[N])
{
int i = 0, ret = 0, cnt = 0;
for (i = 0; i < N; i++) {
if(x[i] > 1000){

ret = ret + x[i];
cnt = cnt + 1;

}
}
if (cnt !=0) return ret / cnt;
else return 0;

}

int rangesum (int x[N])
{
int i, ret = 0, cnt = 0;
for (i = 0; i < N; i++) {
if(i > 1000){

ret = ret + x[i];
cnt = cnt + 1;

}
}
if (cnt !=0) return ret / cnt;
else return 0;

}

In this paper, we investigate the problem of reducer commutativity checking formally. To
model real-world reducers, we introduce the notion of a integer reducer, a syntactically re-
stricted class of loopy programs over integer variables. In addition to assignments and conditional
branches, the reducer contains a single iterator variable to loop over inputs. Two operations are
allowed on the iterator i: next, which moves i to the subsequent element in the input sequence
and initialize, which moves i to the beginning of input sequence. Integer reducers do not allocate
memory and are assumed to always terminate. In spite of these restrictions, we believe that integer
reducers can capture the core computation of real-world reducers faithfully. The paper makes the
following contributions:

– We first show, via a reduction from solving Diophantine equations, that checking the com-
mutativity of integer reducers, over exact integers and unbounded input size, is undecidable.
The problem remains undecidable with a bounded number of input values. This is surprising,
given the restricted syntax and control flow of these reducers.

– Most reducer programs do not use exact integers in practice. We then investigate the problem
of checking reducer commutativity over input sequences with bounded integer values (but un-
bounded length). This problem turns out to be decidable: using automata- and group-theoretic
constructions, we reduce the commutativity checking problem to the regular language equiv-
alence problem over two-way deterministic finite automata.

– Finally, we provide a reduction from reducer commutativity problem to program assertion
checking; the reduction applies to arbitrary reducers instances with input sequences of bounded
length. This enables checking the commutativity of real-world reducers automatically using
off-the-shelf program analysis engines. We present an evaluation of multiple different pro-
gram analysis techniques for checking reducer commutativity.

The paper is organized as follows. We review basic notions in Sec. 2. Sec. 3 presents a formal
model for reducers and definition of the commutativity problem. It is followed by the undecid-
ability result (Sec. 4). We then consider reducers with only bounded integers in Sec. 5. Sec. 6
shows the commutativity problem for bounded integer reducers is decidable. Sec. 7 gives the
experimental results, Sec. 8 explains the related work and we conclude in Sec. 9.

2

2 Preliminaries

Let n = {1, 2, . . . , n}. A permutation on n is a one-to-one and onto mapping from n to n.
The set of permutations on n is denoted by Sn. It can be shown that Sn is a group (called the
symmetric group on n letters) under the functional composition. Let l1, l2, . . . , lm ∈ Z. We write
[l1; l2; · · · ; lm] to denote the integer list consisting of the elements l1, l2, . . . , lm. For an integer
list `, the notations |`|, hd(`), and tl(`) denote the length, head, and tail of ` respectively. The
function empty(`) returns 1 if ` is empty; otherwise, it returns 0. For instance, hd([0; 1; 2]) = 0,
tl([0; 1; 2]) = [1; 2], and empty(tl([0; 1; 2])) = 0.

We define the semantics of reducer programs using transition systems. A transition system
T = 〈S,−→〉 consists of a (possibly infinite) set S of states and a transition relation−→⊆ S×S.
For s, t ∈ S, we write s −→ t for (s, t) ∈→.

A two-way deterministic finite automaton (2DFA) M = 〈Q,Σ,∆, q0, F 〉 consists of a finite
state set Q, a finite alphabet Σ, a transition function∆ : Q×Σ → Q×{L,R,−}, an initial state
q0 ∈ Q, and an accepting set F ⊆ Q. A 2DFA has a read-only tape and a read head to indicate
the current symbol on the tape. If∆(q, a) = (q′, γ),M at the state q reading the symbol a transits
to the state q′. It then moves its read head to the left, right, or same position when γ is L, R, or
− respectively. A configuration of M is of the form wqv where w ∈ Σ∗, v ∈ Σ+, and q ∈ Q;
it indicates that M is at the state q and reading the first symbol of v. The initial configuration of
M on input w is q0w. For any qf ∈ F , a ∈ Σ, and w ∈ Σ∗, wqfa is an accepting configuration.
M accepts a string w ∈ Σ∗ if M starts from the initial configuration on input w and reaches
an accepting configuration. Define L(M) = {w : M accepts w}. It is known that 2DFA can
be algorithmically translated to language equivalent classical deterministic finite automata (DFA)
and checking language equivalence between two DFA is decidable [16].

Theorem 1. Let M = 〈Q,Σ,∆, q0, F 〉 be a 2DFA. L(M) is regular.

2.1 Facts about Symmetric Groups

We will need notations and facts from basic group theory. Let {x1, x2, . . . , xk} ⊆ n. The notation
(x1 x2 · · · xk) denotes a permutation function on n such that x1 7→ x2, x2 7→ x3, . . . , xk−1 7→
xk, and xk 7→ x1. Define τk = (1 2 · · · k).

Theorem 2 ([12]). For every permutation σ ∈ Sn, σ is equal to a composition of τ2 and τn.

For ` = [l1; l2; · · · ; lm] and σ ∈ Sm, define σ(`) = [lσ(1); lσ(2); · · · ; lσ(m)]. For example,
τ3([3; 2; 1]) = [2; 1; 3]. Next proposition is useful to checking commutativity of reducers.

Proposition 1. Let A be a set of lists. The following are equivalent:

1. for every ` ∈ A with |`| > 1, both τ2(`) and τ|`|(`) are in A;
2. for every ` ∈ A and σ ∈ S|`|, σ(`) is in A.

In other words, to check whether all permutations of a list belong to a set, it suffices to check
two specific permutations by Proposition 1.

3

3 Integer Reducers

Map-Reduce is a programming model for data parallel computation. Programmers can choose to
implement map and reduce phases in a programming language of their choice. In order to analyze
real-world reducers, we give a formal model to characterize the essence of reducers. Our model
allows to describe the computation of reducers and investigate their commutativity.

A reducer receives a key k and a non-empty sequence of values associated with k as input;
it returns a key-value pair (k, v) as the output. We are interested in checking whether the output
is independent of the order of input sequence. Since both input and output keys are not essential,
they are ignored in our model. Because most data parallel computation deals with numerical
values [19], we assume that both input and output values are integers. To access input sequence
values, we adopt the abstract notion of iterators from modern programming languages; a reducer
performs its core computation by iterating over the input sequence.

Reducers are represented by control flow graphs. Let Var denote the set of integer variables.
Define the syntax of commands Cmd as follows.

v ∈ Var
4
= x | y | z | · · ·

e ∈ Exp
4
= e = e | e > e | ! e | e && e | Boolean expressions
. . . ,−1, 0, 1, 2, . . . | v | e+e | e×e | integer expressions
current() | current element
end() end of iterator

c ∈ Cmd
4
= v := e | assignment

init iter() | initialize iterator
next() | next element
assume e | assumption
return e return

The command init iter() initializes the iterator by pointing to the first input value in the
list. The expression current() returns the current input value pointed to by the iterator. The
next() command updates the iterator by pointing to the next input value. The expression end()
returns 1 if the iterator is at the end of the list; it returns 0 otherwise.

A control flow graph G = 〈N,E, cmd, ns, ne〉 consists of a finite set of nodes N , a set of
edges E ⊆ N ×N , a command labeling function cmd : E → Cmd, a start node ns ∈ N , and an
end node ne ∈ N . The start node has no incoming edges. The end node has no outgoing edges
and exactly one incoming edge. The only incoming edge of the end node is the only edge labeled
with a return command. Without loss of generality, we assume that the first command is always
init iter() and all variables are initialized to 0. Moreover, edges with the same source must
all be labeled assume commands; the Boolean expressions in these assume commands must be
exhaustive and exclusive. In other words, we only consider deterministic reducers.

Figure 1 shows the control flow graph of a reducer. After the iterator is initialized, the reducer
stores the first input value in the variable m. For each input value, it stores the value in n. If m is not
greater than n, the reducer updates the variable m. It then checks if there are more input values. If
so, the reducer performs a next() command and examines the next input value. Otherwise, m is
returned. The reducer thus computes the maximum value from the input sequence.

In order to define the semantics of reducers, we assume a set of reserved variables r =
{vals, iter, result}. The reserved variable vals contains the list of input values; result
contains the output value. The reserved variable iter is a list; it is used to implement the iterator
for input values. A reserved valuation maps each reserved variable to a value. Val [r] denotes the
set of reserved valuations.

4

ns

n1 n2 n3 n5 n7

ne
n4

n6

init iter()

m := current() n := current() assume m > n

assume (end() = 1)

return massume !(m > n) m := n

assume (end() = 0)next()

Fig. 1: A max Reducer

In addition to reserved variables, a reducer has a finite set of program variables x. A program
valuation assigns integers to program variables. Val [x] is the set of program valuations. For ρ ∈
Val [r], η ∈ Val [x], and e ∈ Exp, define [|e|]ρ,η as follows.

[|n|]ρ,η
4
= n [|x|]ρ,η

4
= η(x)

[|e0+e1|]ρ,η
4
= [|e0|]ρ,η + [|e1|]ρ,η [|e0×e1|]ρ,η

4
= [|e0|]ρ,η × [|e1|]ρ,η

[|!e|]ρ,η
4
= ¬[|e|]ρ,η [|e0 && e1|]ρ,η

4
= [|e0|]ρ,η ∧ [|e1|]ρ,η

[|e0=e1|]ρ,η
4
= [|e0|]ρ,η = [|e1|]ρ,η [|e0>e1|]ρ,η

4
= [|e0|]ρ,η > [|e1|]ρ,η

[|current()|]ρ,η
4
= hd(ρ(iter)) [|end()|]ρ,η

4
= empty(ρ(iter))

Let G = 〈N,E, cmd, ns, ne〉 be a control flow graph . Define CmdG = {cmd(m,n) :
(m,n) ∈ E}. We first define the exact integer semantics of G. IntReducerG is a transition
system 〈Q,−→〉 where Q = N ×Val [r]×Val [x] and −→ is the following transition relation:

(m, ρ, η) −→ (n, ρ, η[x 7→ [|e|]ρ,η]) if cmd(m,n) is x := e
(m, ρ, η) −→ (n, ρ[iter 7→ ρ(vals)], η) if cmd(m,n) is init iter()
(m, ρ, η) −→ (n, ρ[iter 7→ tl(ρ(iter))], η) if cmd(m,n) is next()
(m, ρ, η) −→ (n, ρ[result 7→ [|e|]ρ,η], η) if cmd(m,n) is return e
(m, ρ, η) −→ (n, ρ, η) if cmd(m,n) is assume e and [|e|]ρ,η = tt

On an init iter() command, IntReducerG re-initializes the reserved variable iter with
the input values in inputs. The reserved variable result records the output value on the return
command. The reserved variable iter implements the iterator for input values. The head of iter
is the current input value of the iterator. On a next() command, iter discards the head and hence
moves to the next input value. If iter is the empty list, no more input values remain to be read.

For (n, ρ, η), (n′, ρ′, η′) ∈ Q, we write (n, ρ, η)
∗−→ (n′, ρ′, η′) if there are states (ni, ρi, ηi)

such that (n, ρ, η) = (n1, ρ1, η1), (n′, ρ′, η′) = (nk+1, ρk+1, ηk+1), and for every 1 ≤ i ≤ k,
(ni, ρi, ηi) −→ (ni+1, ρi+1, ηi+1). Since variables are initialized to 0, let ρ0 ∈ Val [r] and η0 ∈
Val [x] be constant 0 valuations. For any non-empty list ` of integers, IntReducerG returns r
on ` if (ns, ρ0[vals 7→ `], η0)

∗−→ (ne, ρ
′, η′) and ρ′(result) = r. The elements in ` are the

input values. The returned value r is an output value. We will also write IntReducerG(`) for the
output value on `.

The commutativity problem for integer reducers is the following: given an integer reducer
IntReducerG, decide whether IntReducerG(`) is equal to IntReducerG(σ(`)) for every non-
empty list ` of input values and permutation σ ∈ S|`|.

4 Undecidability of Commutativity for Integer Reducers

By Rice’s theorem, it is easy to see that the commutativity problem for Turing machines is unde-
cidable. In practice, reducers must terminate and are often simple processes running on commod-

5

ns
...

ne

init iter() i := 1 v := current()

assume i = 1

assume i ≥ m+ 2

x1 := v

xm+2 := v

assume !end()

assume end()

next()

assume

 p1(x1, . . . , xm) = 0 && xm+1 − 1 = 0 &&
· · · && xm+2 − 2 = 0

pk(x1, . . . , xm) = 0 &&

assume !

 p1(x1, . . . , xm) = 0 && xm+1 − 1 = 0 &&
· · · && xm+2 − 2 = 0

pk(x1, . . . , xm) = 0 &&

r := xm+2return r

Fig. 2: A Single-Pass Integer Reducer

ity machines. In this section, we show that the commutativity problem is undecidable even for a
very restricted class of integer reducers which only allows to iterate through each input value at
most once. We call such class of reducers single-pass integer reducers.

The undecidability result is obtained by a reduction from the Diophantine problem. Let x1, x2,
. . . , xm be variables. A Diophantine equation over x1, x2, . . . , xm is of the form

p(x1, x2, . . . , xm) =

D∑
δ=0

∑
δ1+δ2+···+δm=δ

cδ1,δ2,...,δmx
δ1
1 x

δ2
2 · · ·xδmm = 0

where δi ∈ N for every 1 ≤ i ≤ m and D is a constant. A system of k Diophantine equa-
tions S(x1, x2, . . . , xm) over x1, x2, . . . , xm consists of k Diophantine equations p1(x1, x2, . . . ,
xm) = 0, p2(x1, x2, . . . , xm) = 0, . . . , pk(x1, x2, . . . , xm) = 0. A solution to a system
of k Diophantine equations S(x1, x2, . . . , xm) is a tuple of integers i1, i2, . . . , im such that
pj(i1, i2, . . . , im) = 0 for every 1 ≤ j ≤ k. The Diophantine problem is to determine whether a
given system of Diophantine equations has a solution.

Theorem 3 ([13]). The Diophantine problem is undecidable.

We will reduce the Diophantine problem to the commutativity problem for single-pass integer
reducers. Given a system of Diophantine equations S(x1, x2, . . . , xm) = {pj(x1, x2, . . . , xm) =

0 : 1 ≤ j ≤ k}, define Ŝ(x1, x2, . . . , xm, xm+1, xm+2) = S(x1, x2, . . . , xm) ∪ {xm+1 − 1 =
0, xm+2 − 2 = 0}.

Lemma 1. Consider any system of Diophantine equations S(x1, x2, . . . , xm). For every integers
i1, i2, . . . , im ∈ Z, i1, i2, . . . , im is a solution to S(x1, x2, . . . , xm) if and only if i1, i2, . . . , im, 1, 2
is a solution to Ŝ(x1, x2, . . . , xm, xm+1, xm+2).

Theorem 4. Commutativity problem for single-pass integer reducers is undecidable.

Proof (Sketch). Let S(x1, x2, . . . , xm) = {pj(x1, x2, . . . , xm) = 0 : 1 ≤ j ≤ k} be a system
of Diophantine equations. Consider the single-pass integer reducer IntReducerG for the control
flow graph G in Figure 2. IntReducerG stores m + 2 input values in the program variables
x1, x2, . . . , xm+2. It then checks if the Diophantine system Ŝ(x1, x2, . . . , xm, xm+1, xm+2) is

6

solved by the input values. If Ŝ(x1, x2, . . . , xm, xm+1, xm+2) has no solution, IntReducerG
returns 0 for all input value list (r is initialized to 0) and hence IntReducerG is commutative.
On the other hand, if Ŝ(x1, x2, . . . , xm, xm+1, xm+2) has a solution i1, i2, . . . , im, 1, 2, then we
should have IntReducerG([i1; i2; · · · ; im; 1; 2]) = 2, but IntReducerG([i1; i2; · · · ; im; 2; 1]) =
0. Hence IntReducerG is not commutative. ut

4.1 Single-Pass Reducers over Fixed-Length Inputs

The commutativity problem for single-pass integer reducers is undecidable. It is therefore im-
possible to verify whether an arbitrary integer reducer produces the same output on the same
input values in different orders. In the hope of identifying a decidable sub-problem, we consider
the commutativity problem with a fixed number of input values. The m-commutativity prob-
lem for integer reducers is the following: given an integer reducer IntReducerG, determine
whether IntReducerG(`) = IntReducerG(σ(`)) for every list of input values ` of length m
and σ ∈ Sm. Because solving Diophantine equations with 9 non-negative variables is undecid-
able [12], the m-commutativity problem is undecidable when m ≥ 11.

Theorem 5. The m-commutativity problem of single-pass integer reducers is undecidable when
m ≥ 11.

Corollary 1. The m-commutativity problem of integer reducers is undecidable when m ≥ 11.

4.2 From m-Commutativity to Program Analysis

l1 := ∗; l2 := ∗; . . . lm := ∗;

x1 := l1; x2 := l2; . . . xm := lm;
ret :=IntReducerG([x1; x2; . . . ; xm]);

x1 := l2; x2 := l1; x3 := l3; . . . xm := lm;
ret2 :=IntReducerG([x1; x2; . . . ; xm]);
assert (ret = ret2);

x1 := l2; x2 := l3; . . . xm−1 := lm; xm := l1;
retm:=IntReducerG([x1; x2; . . . ; xm]);
assert (ret = retm);

Fig. 3: Fromm-Commutativity to Program Analysis

Since it is impossible to solve the m-
commutativity problem completely, we
propose a sound but incomplete solution to
the problem. For any m input values, the
naı̈ve solution is to check whether an inte-
ger reducer returns the same output value
on all permutations of the m input values.
Since the number of permutations grows
exponentially, the solution clearly is im-
practical. A more effective technique is
needed.

Our idea is to apply the group-
theoretic reduction from Proposition 1.
Rather than checking all permutations of
input values, it suffices to verify the output values on two particular permutations. Figure 3 shows
a program that realizes the idea. In the program, the expression ∗ denotes a non-deterministic
value. The program starts withm non-deterministic integer values in l1, l2, . . . , lm. It then stores
the output value IntReducerG([l1; l2; . . . ; lm]) in ret. The program then computes the output
values IntReducerG(τ2([l1; l2; . . . ; lm])) and IntReducerG(τm([l1; l2; . . . ; lm])). If both
output values are equal to ret for every m input values, we conclude that IntReducerG is m-
commutative.

Theorem 6. If assertions in Figure 3 hold for all computation, IntReducerG ism-commutative.

7

Theorem 6 gives a sound but incomplete technique for the m-commutativity problem. Using
off-the-shelf program analyzers, we can verify whether the assertions in Figure 3 always hold for
all computation. If program analyzers establish both assertions, we conclude that IntReducerG
is m-commutativity. Program analyzers however may fail to prove the assertions; they may also
disprove the assertions incorrectly. The m-commutativity problem is inconclusive in both cases.

5 Bounded Integer Reducers

The commutativity problem for integer reducers is undecidable (Theorem 4). Undecidability per-
sists even if the number of input values is fixed (Theorem 5). One may conjecture that the number
of input values is irrelevant to undecidability of the commutativity problem. What induces unde-
cidability of the problem then?

Exact integers induce undecidability in computational problems such as the Diophantine prob-
lem. However, in most programming languages, exact integers are not supported natively. Conse-
quently, real-world reducers seldom use exact integers. It is thus more faithful to consider reducers
with only bounded integers.

Fix a positive integer d > 0. Recall that r = {vals, iter, result} are reserved variables.
Define Zd = {0, 1, . . . , d − 1}. A bounded reserved valuation assigns the reserved variables
vals, iter lists of elements in Zd, and result an element in Zd; a bounded program valuation
maps x to Zd. We write BVal [r] and BVal [x] for the set of bounded reserved valuations and
bounded program valuations respectively. For every ρ ∈ BVal [r], η ∈ BVal [x], and e ∈ Exp,
define d|e|eρ,η as follows.

d|n|eρ,η
4
= n mod d d|x|eρ,η

4
= η(x)

d|e0+e1|eρ,η
4
= d|e0|eρ,η + d|e1|eρ,η mod d

d|e0×e1|eρ,η
4
= d|e0|eρ,η × d|e1|eρ,η mod d

d|!e|eρ,η
4
= ¬d|e|eρ,η d|e0 && e1|eρ,η

4
= d|e0|eρ,η ∧ d|e1|eρ,η

d|e0=e1|eρ,η
4
= d|e0|eρ,η = d|e1|eρ,η d|e0>e1|eρ,η

4
= d|e0|eρ,η > d|e1|eρ,η

d|current()|eρ,η
4
= hd(ρ(iter)) d|end()|eρ,η

4
= empty(ρ(iter))

LetG = 〈N,E, cmd, ns, ne〉 be a control flow graph over program variables x. In this section
we use the bounded integer semantics of G. BoundedReducerG is a transition system 〈Q, ↪−→〉
where Q = N × BVal [r]× BVal [x] and the following transition relation ↪−→:

(m, ρ, η) ↪−→ (n, ρ, η[x 7→ d|e|eρ,η]) if cmd(m,n) is x := e
(m, ρ, η) ↪−→ (n, ρ[iter 7→ ρ(vals)], η) if cmd(m,n) is init iter()
(m, ρ, η) ↪−→ (n, ρ[iter 7→ tl(ρ(iter))], η) if cmd(m,n) is next()
(m, ρ, η) ↪−→ (n, ρ[result 7→ d|e|eρ,η], η) if cmd(m,n) is return e
(m, ρ, η) ↪−→ (n, ρ, η) if cmd(m,n) is assume e and d|e|eρ,η = tt

Except that expressions are evaluated in modular arithmetic, BoundedReducerG behaves exactly
the same as the integer reducer IntReducerG. Similarly, we write (n, ρ, η)

∗
↪→ (n′, ρ′, η′) if

there are (n1, ρ1, η1) = (n, ρ, η) and (nk+1, ρk+1, ηk+1) = (n′, ρ′, η′) such that (ni, ρi, ηi) ↪→
(ni+1, ρi+1, ηi+1) for every 1 ≤ i ≤ k. For any non-empty list ` of elements in Zd, the bounded
integer reducer BoundedReducerG returns r on ` if (ns, ρ0[vals 7→ `], η0)

∗
↪→ (ne, ρ

′, η′)
and ρ′(result) = r. We use BoundedReducerG(`) to denote the output value r returned by
BoundedReducerG on the list ` of input values.

8

Note that the number of input values is unbounded. BoundedReducerG is an infinite-state
transition system because the reserved variables vals and iter have infinitely many possible
values. On the other hand, all program variables and the reserved variable result can only have
finitely many different values. We will exploit this fact to obtain our decidability result.

6 Deciding Commutativity of Bounded Integer Reducers

We present an automata-theoretic technique to establish decidability of the commutativity prob-
lem for bounded integer reducers. Although bounded integer reducers receive input sequences of
arbitrary lengths, we first show that their computation can be summarized by 2DFA exactly. Based
on the 2DFA characterizing the computation of a bounded integer reducer, we construct another
2DFA to summarize the computation of the reducer on permuted input values. Using Proposi-
tion 1, we reduce the commutativity problem for bounded integer reducers to the language equiv-
alence problem for 2DFA. Since language equivalence problem of 2DFA is decidable, it follows
that checking bounded integer reducer commutativity is decidable.

More precisely, let G be a control flow graph, m > 0, and l1, l2, . . . , lm, r ∈ Zd. We con-
struct a 2DFA AG such that it accepts the string Cl1l2 · · · lm B r1 exactly when the bounded
integer reducer BoundedReducerG returns r on the list [l1; l2; . . . ; lm]. For clarity, we say li
is the i-th input value of AG, which is in fact the i-th input value of BoundedReducerG. We
use the read-only tape as the reserved vals variable. Two additional reserved variables current
and end are introduced for the current() and end() expressions. On a return command, AG
stores the returned value in the reserved result variable. If the last symbol r of the input string
is equal to result, AG accepts the input. Otherwise, it rejects the input. More concretely, let
s = {current, end, result} be reserved variables and G = 〈N,E, cmd, ns, ne〉 a control flow
graph over program variables x. A finite reserved valuation maps s to Zd; a finite program valu-
ation maps x to Zd. We write FVal [s] and FVal [x] for the sets of finite reserved valuations and
finite program valuations respectively. Note that FVal [s] and FVal [x] are finite sets since s, x,
Zd are finite. For every ρ ∈ FVal [s], η ∈ FVal [x], and e ∈ Exp, define {|e|}ρ,η as follows.

{|n|}ρ,η
4
= n mod d {|x|}ρ,η

4
= η(x)

{|e0+e1|}ρ,η
4
= {|e0|}ρ,η + {|e1|}ρ,η mod d

{|e0×e1|}ρ,η
4
= {|e0|}ρ,η × {|e1|}ρ,η mod d

{|!e|}ρ,η
4
= ¬{|e|}ρ,η {|e0 && e1|}ρ,η

4
= {|e0|}ρ,η ∧ {|e1|}ρ,η

{|e0=e1|}ρ,η
4
= {|e0|}ρ,η = {|e1|}ρ,η {|e0>e1|}ρ,η

4
= {|e0|}ρ,η > {|e1|}ρ,η

{|current()|}ρ,η
4
= ρ(current) {|end()|}ρ,η

4
= ρ(end)

A state of AG is a quadruple (n, q, ρ, η) where n is a node in G, q is a control state, ρ is a
finite reserved valuation, and η is a finite program valuation. The control state qnor means the
“normal” operation mode. For an assignment command in G, AG simulates the assignment in its
finite states (Figure 4a). For an assume command, AG has a transition exactly when the assumed
expression evaluated to tt (Figure 4b). For a return command, AG stores the returned value in
result and enters the control state qreturn0 . In qreturn0 , AG moves its read head to the right
until it sees the B symbol (Figure 4c)2. On the B symbol, AG enters the control state qreturn1

1 C and B are also symbols of AG
2 α denotes any symbol other than α.

9

m

n

m, qnor , ρ, η

n, qnor , ρ, η[x 7→ {|e|}ρ,η]
x:=e −/−

(a) Assignments

When {|e|}ρ,η = tt

m

n

m, qnor , ρ, η

n, qnor , ρ, η

assume e −/−

(b) assume Commands

m

n

m, qnor , ρ, η

n, qreturn0 , ρ[result 7→ {|e|}ρ,η], η

n, qreturn1 , ρ[result 7→ {|e|}ρ,η], η

n, qf , ρ[result 7→ {|e|}ρ,η], η n, qerr , ρ[result 7→ {|e|}ρ,η], η

return e

−/− B/R

B/R

a/−, ρ(result) = a a/−, ρ(result) 6= a

(c) return Commands

Fig. 4: Construction of AG

and compares the last symbol a with the returned value. It enters the accepting control state qf if
a and result are equal.

For an init iter() command, AG simulates it by moving its read head to the leftmost input
value. It enters the control state qrewind and stays until the C symbol is read. AG then moves
its read head to the first input value, sets end to 0 and enters the control state qnext0 to update
the reserved variable current (Figure 5a). For the next() command, AG similarly enters qnext0
to update the value of current (Figure 5b). At the control state qnext0 , AG assumes that the
symbol under its read head is the next input value. If end is 1, AG enters the error control state
qerr immediately. Otherwise, it updates the reserved variable current, moves its read head to
the right, and checks if there are more input values at the control state qnext1 . If the symbol is B,
AG sets end to 1 and enters the normal operation mode (Figure 5c). Details are in Appendix A.

Lemma 2. Let BoundedReducerG be a bounded integer reducer for a control flow graph G =
〈N,E, cmd, ns, ne〉, m > 0, and l1, l2, . . . , lm, r ∈ Zd. Then

L(AG) = {Cl1l2 · · · lm B r : BoundedReducerG([l1; l2; · · · ; lm]) = r}.

The commutativity problem for bounded integer reducers asks us to check whether a given
bounded integer reducer returns the same output value on any permutation of input values. Ap-
plying Proposition 1, it suffices to consider two particular permutations. We have shown that the
computation of a bounded integer reducer can be summarized by a 2DFA. Our proof strategy
hence is to summarize the computation of the given bounded integer reducer on permuted input
values by two 2DFA. We compare the computation of a bounded integer reducer on original and
permuted input values by checking if the two 2DFA accept the same language.

We will generalize the construction of AG to define another 2DFA named Aτ2G for the com-
putation on permuted input values. Consider a non-empty list of input values ` = [l1; l2; · · · ; lm]
withm > 1. The 2DFAAτ2G will accept the stringCl1l2 · · · lmBr where r is BoundedReducerG(τ2(`))
and BoundedReducerG is the bounded integer reducer for the control flow graph G. Our con-
struction uses additional reserved variables to store the first two input values. Aτ2G also has two

10

m

n

m, qnor , ρ, η

n, qrewind , ρ, η

n, qnext0 , ρ[end 7→ 0], η

init iter()

−/−
C/L

C/R

(a) init iter() Commands

m

n

m, qnor , ρ, η

n, qnext0 , ρ, η

next() −/−

(b) next() Commands

When ρ(end) = 1

n, qnext0 , ρ, η n, qerr , ρ, η

When ρ(end) = 0

n, qnext0 , ρ, η n, qnext1 , ρ[current 7→ a], η

n, qnor , ρ[current 7→ a, end 7→ 1], ηn, qnor , ρ[current 7→ a, end 7→ 0], η

−/−

a/R

B/−B/−

(c) Next input Value

Fig. 5: Construction of AG (continued)

new control states to indicate whether the first two input values are to be read. Since the con-
struction of the last 2DFA is less complicated, we will give informal description for the next
construction and skip Aτ2G due to page limit. The formal definition is in Appendix B.

Lemma 3. Let BoundedReducerG be a bounded integer reducer for a control flow graph G =
〈N,E, cmd, ns, ne〉, m > 0, and l1, l2, . . . , lm, r ∈ Zd. Then

L(Aτ2G) = {Cl1l2 · · · lm B r : BoundedReducerG(τ2([l1; l2; · · · ; lm])) = r}.

Lemma 4. Let BoundedReducerG be a bounded integer reducer for a control flow graph G =
〈N,E, cmd, ns, ne〉. The languages L(Aτ2G) = L(AG) if and only if BoundedReducerG(`) =
BoundedReducerG(τ2(`)) for every non-empty list ` of elements in Zd.

Based on the construction ofAG, we construct another 2DFA namedAτ∗G which characterizes
the computation of the given bounded integer reducer BoundedReducerG on input values in a
different permutation. More precisely, for any non-empty list of input values ` = [l1; l2; · · · ; lm],
Aτ∗G accepts the string Cl1l2 · · · lm B r where r is BoundedReducerG(τm(`)). For the string
Cl1l2 · · · lm B r on Aτ∗G ’s tape, observe that l2 is the 2nd input value of Aτ∗G and the 1st input
value of BoundedReducerG.

A state ofAτ∗G is a quadruple (n, q, ρ, η) where n is a node inG, q is a control state, ρ is a finite
reserved valuation, and η is a finite program valuation. In addition to s, Aτ∗G has another reserved
variable fst to memorize the first input value of Aτ∗G . It also has three new control states: q0 for
initialization, qnor for the normal operation mode, and qlast for the case where the last input value
of BoundedReducerG has been read.

At initialization, Aτ∗G stores its first input value in the reserved variable fst and transits to the
normal operation mode qnor . To initialize the iterator, Aτ∗G moves its read head and stores the first
input value of BoundedReducerG in the reserved variable current. Retrieving the next input
value of BoundedReducerG is slightly complicated. If there are more input values, Aτ∗G moves
its read head to the right and updates current accordingly. Otherwise, the first input value ofAτ∗G
is the last input value of BoundedReducerG. Aτ∗G sets current to the value of fst and transits
to the state qlast .

11

m

n

m, q, ρ, η

n, qnext , ρ, η

if q = qnor

n, qerr , ρ, η

if q = qlast

next() −/− −/−

(a) next() Commands

m

n

m, q, ρ, η

n, qrewind0 , ρ, η

n, qrewind1 , ρ[end 7→ 0], η

n, qnext , ρ[end 7→ 0], η

init iter()

−/−
C/L

C/R

−/R

(b) init iter() Commands

Fig. 6: Construction of Aτ∗G
More concretely, Aτ∗G transits to the control state qnext if it is in the normal operation mode

qnor for an next() command. It transits to the error state qerr when the last input value of
BoundedReducerG has been read (Figure 6a). For an init iter() command, Aτ∗G moves its
read head to the second input value of Aτ∗G . Since the second input value of Aτ∗G is the first input
value of BoundedReducerG, Aτ∗G sets end to 0 and transits to the control state qnext to update
the reserved variable current (Figure 6b).

n, q0, ρ, η

n, qinit , ρ, η

n, qnor , ρ[fst 7→ a], η

C/R

a/−

(a) Initialization

n, qnext , ρ, η

n, qnor , ρ[current 7→ a], η

n, qlast , ρ[current 7→ ρ(fst), end 7→ 1], η

a/R, a 6= B
B/−

(b) Next input Value

Fig. 7: Construction of Aτ∗G (continued)

Figure 7a shows the initialization step. Aτ∗G simply stores its first input value in the reserved
variable fst and transits to the normal operation model qnor . The auxiliary control state qnext
retrieves the next input value of BoundedReducerG (Figure 7b). If there are more input values of
Aτ∗G , Aτ∗G updates current, moves its read head to the right, and transits to the normal operation
mode qnor . If Aτ∗G reaches the end of its input values, the first input value of Aτ∗G needs to be read
as the last input value of BoundedReducerG. Aτ∗G hence updates current to the value of fst,
sets end to 1, and transits to qlast . The complete formal definition is given in Appendix C.

Lemma 5. Let BoundedReducerG be a bounded integer reducer for a control flow graph G =
〈N,E, cmd, ns, ne〉, m > 0, and l1, l2, . . . , lm, r ∈ Zd. Then

L(Aτ∗G) = {Cl1l2 · · · lm B r : BoundedReducerG(τm([l1; l2; · · · ; lm])) = r}.

Lemma 6. Let BoundedReducerG be a bounded integer reducer for a control flow graph G =
〈N,E, cmd, ns, ne〉. The languages L(AG) = L(Aτ∗G) if and only if BoundedReducerG(`) =
BoundedReducerG(τ|`|(`)) for every non-empty list ` of elements in Zd.

By Proposition 1, Lemma 4 and 6, we have the following theorem:

Theorem 7. Let BoundedReducerG be a bounded integer reducer for a control flow graph
G = 〈N,E, cmd, ns, ne〉. L(AG) = L(Aτ2G) = L(Aτ∗G) if and only if BoundedReducerG(`) =
BoundedReducerG(σ(`)) for every non-empty list ` of elements in Zd and σ ∈ S|`|.

12

Since 2DFA language equivalence problem is decidable, we have the following result:

Theorem 8. The commutativity problem for bounded integer reducers is decidable.

7 Experiments
CBMC CPA-Pred. CPA-Oct. SYMRED KLEE

sum5.c 43 64 3(F) 0.2 0.02
sum10.c TO TO 3(F) 0.4 0.02
sum20.c TO TO 3(F) 1 0.03
sum40.c TO TO 3(F) 1 0.04
sum60.c TO TO 4(F) 2 0.1
avg5.c TO TO 3(F) 0.3 -
avg10.c TO TO 3(F) 0.4 -
avg20.c TO TO 3(F) 0.8 -
avg40.c TO TO 3(F) 1 -
avg60.c TO TO 3(F) 2 -
max5.c 3 TO 3(F) 0.5 6

max10.c 215 TO 5(F) 7 102
max20.c TO TO 6(F) 103 TO
max40.c TO TO 7(F) 288 TO
max60.c TO TO 9(F) TO TO
sep5.c 0.2 21 4(F) 0.5 0.1

sep10.c 0.3 TO 8(F) 2 5
sep20.c 2 TO 202(F) 22 TO
sep40.c 26 TO TO 21 TO
sep60.c TO TO TO 22 TO
dis5.c TO 3 4(F) 1 -

dis10.c TO TO 5(F) 3 -
dis20.c TO TO 9(F) TO -
dis40.c TO TO 24(F) TO -
dis60.c TO TO 67(F) TO -

rangesum5.c 0.1 5 3 0.3 -
rangesum10.c 0.1 8 3 0.5 -
rangesum20.c 2 18 3 0.9 -
rangesum40.c 4 25 4 2 -
rangesum60.c 5 TO 4 2 -

Table 1: Verify Integer Reducers with
Fixed Numbers of Input Values.

The reduction in Section 4.2 allows us to use any
off-the-shelf program analyzer for checking com-
mutativity of reducers; given a reducer, we con-
struct the program containing assertions (Sec. 4.2)
and check for any assertion violations using a pro-
gram analyzer. The goal of this section is to evaluate
the performance of state-of-the-art program analyz-
ers for checking commutativity.

We pick four analyzers, CPACHECKER [1],
CBMC [3], KLEE [2] and our home-grown
tool, SYMRED. We use two configurations for
CPACHECKER, namely, predicate abstraction auto-
mated with interpolation and abstract interpretation
using octagon domain. CBMC is a bounded model
checker for C programs over bounded machine in-
tegers. The tools KLEE and SYMRED implement
symbolic execution techniques: KLEE symbolically
executes one path at-a-time while SYMRED con-
structs multi-path reducer summaries using sym-
bolic execution and precise data-flow merging [18].
The tool KLEE uses STP [8] while SYMRED uses
Z3 [5] as the underlying solver.

All experiments were conducted on an Xeon
3.07GHz Linux Ubuntu workstation with 16GB
memory. The evaluation results are shown in Ta-
ble 1. The symbol (TO) denotes that the tool cannot
finish the analysis within the timeout period of 5 minutes. The symbol (F) denotes that the tool
produced an incorrect result. We found that KLEE cannot handle programs with division on some
of our benchmarks; such cases are shown with the symbol -.

Our benchmarks consist of a set of 5 reducer programs in C, parameterized over the length of
the input list (from 5 to 100). All the benchmark reducers but “rangesum” are commutative. The
first three sets of benchmarks compute respectively the sum, average, and max value of the list.
The benchmark “sep” computes the difference of the occurrences of even and odd numbers in the
list. The example “dis” computes the average of input values greater than 100000. The example
“rangesum” computes the average of input values of index greater than a half of the list length. We
model input lists as bounded arrays and the iteration as a while loop with an index variable. The
code for the benchmarks and other details of the experiments are available in the Appendix D.

Predicate abstraction based CPACHECKER uses predicates to separate reachable states and
bad states; new predicates are inferred via interpolation from an incorrect error trace. Benchmark
sets such as “sum” and “avg” contain no branch conditions and contain only one symbolic trace.
Here, it suffices to check the satisfiability and compute interpolant of the single trace formula.
Still, the verifier cannot scale to large input lists for these examples.

13

CPACHECKER using abstract interpretation over octagon domain finishes in seconds on all
benchmarks but produces false positives on all commutative ones. We observe that a suitable
abstract domain for checking commutativity should be able to simultaneously support (a) permu-
tation orders of the input sequence (b) numerical properties, e.g., the sum of the input list, and
(c) equivalence between numerical values. Although domains handling numerical properties of
lists [9] and program equivalence [14] exist independently, we are not aware of any work which
handles both simultaneously.

We found that reducers with addition and division operations in general are difficult for
CBMC. The “avg” and “div” benchmarks use divisions and the model checker cannot handle
the case with list length more than 5. The “sep” benchmark does not use divisions: CBMC scales
better on this benchmark. For the “rangesum” examples, CBMC can catch the bug in seconds.

The two symbolic execution based approaches, KLEE and SYMRED, seem to be more effec-
tive for commutativity checking. SYMRED performs better than KLEE on “sep” and “max”, both
of which contain branches: we believe this is because SYMRED avoids KLEE-like path enumer-
ation using precise symbolic merges with ite (if-then-else) expressions at join locations. Loop
iterations produce nested ite expressions: although simplification of such expressions reduces
the actual solver time on most benchmarks, it fails to curb the blowup for the “dis” benchmark.
Therefore, better heuristics are needed to check reducer commutativity for unbounded input sizes.

8 Related Work

We broadly divide the related literature into works on commutativity checking in general and for
Map-Reduce computation and regression checking. To our knowledge, no previous work studies
the tractability of the commutativity problem for reducers.

Previous work on commutativity [17, 15, 6] has focused on checking if interface operations on
a shared data structure commute, often to enable better parallelization. Their approach is event-
centric, that is, it checks for independence of operations (different API functions) on data with
arbitrary shapes. In contrast, our approach is data-centric: we use group-theoretic reductions on
ordered data collections for efficient checking.

A recent survey [19] points out the abundance of non-commutative reducers in industrial
Map-Reduce deployments. Previous approaches to checking reducer commutativity use black-
box testing [20] and symbolic execution [4]: they generate large number of tests using permuta-
tions of the input and verify that the output is same, which does not scale even for small input
sizes. Instead we use symbolic encoding of inputs together with properties of symmetric groups to
improve scalability of the checker. Our reduction of commutativity checking to program assertion
checking allows using a variety of off-the-shelf program analyzers for the problem. Our approach
may be seen as a specific form of regression checking [10, 7] where the two versions are identical
except permuting the input order. Hueske et al. [11] propose a static analysis technique to check
re-orderings in the data-flow architecture consisting of multiple map and reduce phases using read
or write conflicts between different phases; they do not consider the data commutativity problem.

9 Conclusions

We present tractability results on the commutativity problem for reducers by analyzing a syntac-
tically restricted class of integer reducers. We show that deciding commutativity of single-pass
reducer over exact integers is undecidable via a reduction from solving Diophantine equation.
Undecidability holds even if reducers receive only a bounded number of input values. We further

14

show that the problem is decidable for reducers over unbounded input sequences over bounded
integers via a reduction to language equivalence checking of 2DFA. A practical solution to com-
mutativity checking is provided via a reduction to assertion checking using group-theoretic re-
duction. We evaluate the performance of multiple program analyzers on parameterized problem
instances. In future, we plan to investigate better heuristics and exploit more structural properties
of real-world reducers for solving the problem for unbounded inputs over exact integers.

References

1. Beyer, D., Keremoglu, M.E.: CPAChecker: A tool for configurable software verification. In: CAV,
Springer (2011) 184–190

2. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation of high-coverage tests
for complex systems programs. In: OSDI, ACM (2008) 209–224

3. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: TACAS, Springer
(2004) 168–176

4. Csallner, C., Fegaras, L., Li, C.: New ideas track: testing mapreduce-style programs. In: FSE. (2011)
504–507

5. de Moura, L.M., Bjorner, N.: Z3: An efficient SMT solver. In: TACAS, Springer (2008) 337–340
6. Dimitrov, D., Raychev, V., Vechev, M., Koskinen, E.: Commutativity race detection. In: PLDI, ACM

(2014) 33
7. Felsing, D., Grebing, S., Klebanov, V., Rummer, P., Ulbrich, M.: Automating regression verification.

In: ASE. (2014) 349–360
8. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: CAV. (2007) 519–531
9. Halbwachs, N., Peron, M.: Discovering properties about arrays in simple programs. In: PLDI. (2008)

10. Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebelo, H.: Towards modularly comparing programs using
automated theorem provers. In: CADE. (2013) 282–299

11. Hueske, F., Peters, M., Sax, M.J., Rheinländer, A., Bergmann, R., Krettek, A., Tzoumas, K.: Opening
the black boxes in data flow optimization. VLDB Endowment 5(11) (2012)

12. Hungerford, T.W.: Algebra. Volume 73 of Graduate Texts in Mathematics. Springer-Verlag (2003)
13. JONES, J.P.: Universal diophantine equation. THE JOURNAL OF SYMBOLIC LOGIC 47(3) (1982)
14. Kovacs, M., Seidl, H., Finkbeiner, B.: Relational abstract interpretation for the verification of 2-

hypersafety properties. In: CCS, ACM (2013) 211–222
15. Kulkarni, M., Nguyen, D., Prountzos, D., Sui, X., Pingali, K.: Exploiting the commutativity lattice.

ACM SIGPLAN Notices 46(6) (2011)
16. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal Res. Dev. 3(2) (1959)
17. Rinard, M., Diniz, P.C.: Commutativity analysis: A new analysis technique for parallelizing compilers.

TOPLAS 19(6) (1997) 942–991
18. Sinha, N., Singhania, N., Chandra, S., Sridharan, M.: Alternate and learn: Finding witnesses without

looking all over. In: CAV, Springer (2012) 599–615
19. Xiao, T., Zhang, J., Zhou, H., Guo, Z., McDirmid, S., Lin, W., Chen, W., Zhou, L.: Nondeterminism

in mapreduce considered harmful? an empirical study on non-commutative aggregators in mapreduce
programs. In: Companion Proceedings of ICSE. (2014) 44–53

20. Xu, Z., Hirzel, M., Rothermel, G.: Semantic characterization of mapreduce workloads. In: IISWC.
(2013) 87–97

15

Appendix

A Formal Construction of AG

Let G = 〈N,E, cmd, ns, ne〉 be a control flow graph over program variables x and define a set
of reserved variables s = {current, end, result}. Define AG = 〈Q,Σ,∆, (ns, qnor , ρ0, η0),
N×{qf }×FVal [s]×FVal [x]〉whereQ = N×{qnor , qrewind , qnext0 , qnext1 , qreturn0 , qreturn1 ,
qerr , qf } × FVal [s] × FVal [x], Σ = Zd ∪ {C,B}, ρ0 ∈ FVal [s], η0 ∈ FVal [x] are constant 0
functions, and for every m,n ∈ N , ρ ∈ FVal [s], η ∈ FVal [x], and a ∈ Σ:

∆((m, qnor , ρ, η), a) = ((n, qnor , ρ, η[x 7→ {|e|}ρ,η]),−) if cmd(m,n) is x := e
∆((m, qnor , ρ, η), a) = ((n, qrewind , ρ, η),−) if cmd(m,n) is init iter()
∆((m, qnor , ρ, η), a) = ((n, qnext0 , ρ, η),−) if cmd(m,n) is next()
∆((m, qnor , ρ, η), a) = ((n, qreturn0 , ρ[result 7→ {|e|}ρ,η], η),−)

if cmd(m,n) is return e
∆((m, qnor , ρ, η), a) = ((n, qnor , ρ, η),−)

if cmd(m,n) is assume e and {|e|}ρ,η = tt

∆((n, qrewind , ρ, η), a) =

{
((n, qrewind , ρ, η), L)
((n, qnext0 , ρ[end 7→ 0], η), R)

if a 6= C
if a = C

∆((n, qnext0 , ρ, η), a) =

{
((n, qnext1 , ρ[current 7→ a], η), R)
((n, qerr , ρ, η),−)

if ρ(end) = 0
if ρ(end) = 1

∆((n, qnext1 , ρ, η), a) =

{
((n, qnor , ρ[end 7→ 0], η),−)
((n, qnor , ρ[end 7→ 1], η),−)

if a 6= B
if a = B

∆((n, qreturn0 , ρ, η), a) =

{
((n, qreturn0 , ρ, η), R)
((n, qreturn1 , ρ, η), R)

if a 6= B
if a = B

∆((n, qreturn1 , ρ, η), a) =

{
((n, qf , ρ, η),−)
((n, qerr , ρ, η),−)

if ρ(return) = a
if ρ(return) 6= a

Example. Let us do a sample run of AG for Figure 1 on C231B 3. Define

ρ0
4
= {current 7→ 0, end 7→ 0, result 7→ 0}

ρ1
4
= ρ0[current 7→ 2] ρ2

4
= ρ0[current 7→ 3]

ρ3
4
= ρ0[current 7→ 1, end 7→ 1] ρ4

4
= ρ3[result 7→ 3]

(ns, qnor , ρ0, η0)C 231B 3 ` (n1, qrewind , ρ0, η0)C 231B 3 ` C(n1, qnext0 , ρ0, η0)231B 3
` C2(n1, qnext1 , ρ1, η0)31B 3 ` C2(n1, qnor , ρ1, η0)31B 3 ` C2(n2, qnor , ρ1, η0[m 7→ 2])31B 3
` C2(n3, qnor , ρ1, η0[m 7→ 2, n 7→ 2])31B 3 ` C2(n4, qnor , ρ1, η0[m 7→ 2, n 7→ 2])31B 3
` C2(n5, qnor , ρ1, η0[m 7→ 2, n 7→ 2])31B 3 ` C2(n6, qnor , ρ1, η0[m 7→ 2, n 7→ 2])31B 3
` C2(n2, qnext0 , ρ1, η0[m 7→ 2, n 7→ 2])31B 3 ` C23(n2, qnext1 , ρ2, η0[m 7→ 2, n 7→ 2])1B 3
` C23(n2, qnor , ρ2, η0[m 7→ 2, n 7→ 2])1B 3 ` C23(n3, qnor , ρ2, η0[m 7→ 2, n 7→ 3])1B 3
` C23(n4, qnor , ρ2, η0[m 7→ 2, n 7→ 3])1B 3 ` C23(n5, qnor , ρ2, η0[m 7→ 3, n 7→ 3])1B 3
` C23(n6, qnor , ρ2, η0[m 7→ 3, n 7→ 3])1B 3 ` C23(n2, qnext0 , ρ2, η0[m 7→ 3, n 7→ 3])1B 3
` C231(n2, qnext1 , ρ2[current 7→ 1], η0[m 7→ 3, n 7→ 3])B 3
` C231(n2, qnor , ρ3, η0[m 7→ 3, n 7→ 3])B 3 ` C231(n3, qnor , ρ3, η0[m 7→ 3, n 7→ 1])B 3
` C231(n5, qnor , ρ3, η0[m 7→ 3, n 7→ 1])B 3 ` C231(n7, qnor , ρ3, η0[m 7→ 3, n 7→ 1])B 3
` C231(ne, qreturn0 , ρ4, η0[m 7→ 3, n 7→ 1])B 3 ` C231B (ne, qreturn1 , ρ4, η0[m 7→ 3, n 7→ 1])3
` C231B (ne, qf , ρ4, η0[m 7→ 3, n 7→ 1])3

B Formal Construction of Aτ2
G

Let G = 〈N,E, cmd, ns, ne〉 be a control flow graph over program variables x, and s′ =
{current, end, result, fst, snd} reserved variables. We use the definition Aτ2G = 〈Q′, Σ,∆′,
(ns, q0, ρ0, η0), N×{qf }×FVal [s′]×FVal [x]〉whereQ′ = N×{q0, qfst , qsnd , qtl , qinit0 , qinit1 ,
qrewind0 , qrewind1 , qrewind2 , qnext0 , qnext1 , qreturn0 , qreturn1 , qerr , qf }×FVal [s′]×FVal [x],Σ =

16

Zd∪{C,B}, ρ0 ∈ FVal [s′] and η0 ∈ FVal [s′] are constant 0 functions, and for everym,n ∈ N ,
ρ ∈ FVal [s′], η ∈ FVal [x] and a ∈ Σ,

∆′((n, q0, ρ, η),C) = ((n, qinit0 , ρ, η), R)
∆′((m, q, ρ, η), a) = ((n, q, ρ, η[x 7→ {|e|}ρ,η]),−)

if cmd(m,n) is x := e and q ∈ {qfst , qsnd , qtl}
∆′((m, q, ρ, η), a) = ((n, qrewind0 , ρ, η),−)

if cmd(m,n) is init iter() and q ∈ {qfst , qsnd , qtl}
∆′((m, q, ρ, η), a) = ((n, qreturn0 , ρ[result 7→ {|e|}ρ,η], η),−)

if cmd(m,n) is return e and q ∈ {qfst , qsnd , qtl}
∆′((m, q, ρ, η), a) = ((n, q, ρ, η),−)

if cmd(m,n) is assume e, {|e|}ρ,η = tt, and q ∈ {qfst , qsnd , qtl}
∆′((m, qfst , ρ, η), a) = ((n, qsnd0 , ρ, η),−) if cmd(m,n) is next()

∆′((n, qsnd0 , ρ, η), a) =

{
((n, qsnd1 , ρ[current 7→ ρ(fst)], η), R)
((n, qerr , ρ, η),−)

if ρ(end) = 0
if ρ(end) = 1

∆′((n, qsnd1 , ρ, η), a) =

{
((n, qsnd , ρ[end 7→ 0], η),−)
((n, qsnd , ρ[end 7→ 1], η),−)

if a 6= B
if a = B

∆′((m, q, ρ, η), a) = ((n, qnext0 , ρ, η),−)
if cmd(m,n) is next() and q ∈ {qsnd , qtl}

∆′((n, qinit0 , ρ, η), a) = ((n, qinit1 , ρ[fst 7→ a], η), R)

∆′((n, qinit1 , ρ, η), a) =

{
((n, qfst , ρ[snd 7→ ρ(fst)], η),−)
((n, qfst , ρ[snd 7→ a], η),−)

if a = B
if a 6= B

∆′((n, qrewind0 , ρ, η), a) =

{
((n, qrewind0 , ρ, η), L)
((n, qrewind1 , ρ, η), R)

if a 6= C
if a = C

∆′((n, qrewind1 , ρ, η), a) = ((n, qrewind2 , ρ[current 7→ ρ(snd)], η), R)

∆′((n, qrewind2 , ρ, η), a) =

{
((n, qfst , ρ[end 7→ 1], η),−)
((n, qfst , ρ[end 7→ 0], η),−)

if a = B
if a 6= B

∆′((n, qnext0 , ρ, η), a) =

{
((n, qnext1 , ρ[current 7→ a], η), R)
((n, qerr , ρ, η),−)

if ρ(end) = 0
if ρ(end) = 1

∆′((n, qnext1 , ρ, η), a) =

{
((n, qtl , ρ[end 7→ 0], η),−)
((n, qtl , ρ[end 7→ 1], η),−)

if a 6= B
if a = B

∆′((n, qreturn0 , ρ, η), a) =

{
((n, qreturn0 , ρ, η), R)
((n, qreturn1 , ρ, η), R)

if a 6= B
if a = B

∆′((n, qreturn1 , ρ, η), a) =

{
((n, qf , ρ, η),−)
((n, qerr , ρ, η),−)

if ρ(result) = a
if ρ(result) 6= a

Example. Let us do a run of Aτ2G for Figure 1 on C231B 3. Define

ρ0
4
= {fst 7→ 0, snd 7→ 0, current 7→ 0, end 7→ 0, result 7→ 0}

ρ1
4
= ρ0[fst 7→ 2, snd 7→ 3] ρ2

4
= ρ1[current 7→ 3]

ρ3
4
= ρ1[current 7→ 2] ρ4

4
= ρ1[current 7→ 1, end 7→ 1]

ρ5
4
= ρ3[result 7→ 3]

(ns, q0, ρ0, η0)C 231B 3 ` C(ns, qinit0 , ρ0, η0)231B 3 ` C2(ns, qinit1 , ρ0[fst 7→ 2], η0)31B 3
` C2(ns, qfst , ρ1, η0)31B 3 ` C2(n1, qrewind0 , ρ1, η0)31B 3 ` C(n1, qrewind0 , ρ1, η0)231B 3
` (n1, qrewind0 , ρ1, η0)C 231B 3 ` C(n1, qrewind1 , ρ1, η0)231B 3 ` C2(n1, qrewind2 , ρ2, η0)31B 3
` C2(n1, qfst , ρ2, η0)31B 3 ` C2(n2, qfst , ρ2, η0[m 7→ 3])31B 3
` C2(n3, qfst , ρ2, η0[m 7→ 3, n 7→ 3])31B 3 ` C2(n4, qfst , ρ2, η0[m 7→ 3, n 7→ 3])31B 3
` C2(n5, qfst , ρ2, η0[m 7→ 3, n 7→ 3])31B 3 ` C2(n6, qfst , ρ2, η0[m 7→ 3, n 7→ 3])31B 3
` C2(n2, qsnd0 , ρ2, η0[m 7→ 3, n 7→ 3])31B 3 ` C23(n2, qsnd1 , ρ3, η0[m 7→ 3, n 7→ 3])1B 3
` C23(n2, qsnd , ρ3, η0[m 7→ 3, n 7→ 3])1B 3 ` C23(n3, qsnd , ρ3, η0[m 7→ 3, n 7→ 2])1B 3
` C23(n5, qsnd , ρ3, η0[m 7→ 3, n 7→ 2])1B 3 ` C23(n6, qsnd , ρ3, η0[m 7→ 3, n 7→ 2])1B 3
` C23(n2, qnext0 , ρ3, η0[m 7→ 3, n 7→ 2])1B 3
` C231(n2, qnext1 , ρ1[current 7→ 1], η0[m 7→ 3, n 7→ 2])B 3
` C231(n2, qtl , ρ4, η0[m 7→ 3, n 7→ 2])B 3 ` C231(n3, qtl , ρ4, η0[m 7→ 3, n 7→ 1])B 3
` C231(n5, qtl , ρ4, η0[m 7→ 3, n 7→ 1])B 3 ` C231(n7, qtl , ρ4, η0[m 7→ 3, n 7→ 1])B 3
` C231(ne, qreturn0 , ρ5, η0[m 7→ 3, n 7→ 1])B 3 ` C231B (ne, qreturn1 , ρ5, η0[m 7→ 3, n 7→ 1])3
` C231B (ne, qf , ρ5, η0[m 7→ 3, n 7→ 1])3

17

C Formal Construction of Aτ∗
G

Let G = 〈N,E, cmd, ns, ne〉 be a control flow graph over program variables x and define re-
served variables s′′ = {current, end, result, fst}. Consider 2DFA Aτ∗G = 〈Q′′, Σ, ∆′′,
(ns, q0, ρ0, η0), N×{qf }×FVal [s′′]×FVal [x]〉whereQ′′ = N×{q0, qlast , qnor , qinit , qrewind0 ,
qrewind1 , qnext , qreturn0 , qreturn1 , qerr , qf } × FVal [s′′] × FVal [x], Σ = Zd ∪ {C,B}, ρ0 ∈
FVal [s′′] and η0 ∈ FVal [s′′] are constant 0 functions, and for every m,n ∈ N , ρ ∈ FVal [s′′],
η ∈ FVal [x] and a ∈ Σ,

∆′′((n, q0, ρ, η),C) = ((n, qinit , ρ, η), R)
∆′′((m, q, ρ, η), a) = ((n, q, ρ, η[x 7→ {|e|}ρ,η]),−)

if cmd(m,n) is x := e and q ∈ {qlast , qnor}
∆′′((m, q, ρ, η), a) = ((n, qrewind0 , ρ, η),−)

if cmd(m,n) is init iter() and q ∈ {qlast , qnor}
∆′′((m, q, ρ, η), a) = ((n, qreturn0 , ρ[result 7→ {|e|}ρ,η]),−)

if cmd(m,n) is return e and q ∈ {qlast , qnor}
∆′′((m, q, ρ, η), a) = (n, q, ρ, η)

if cmd(m,n) is assume e, {|e|}ρ,η = tt, and q ∈ {qlast , qnor}
∆′′((m, qnor , ρ, η), a) = ((n, qnext , ρ, η),−) if cmd(m,n) is next()
∆′′((m, qlast , ρ, η), a) = ((n, qerr , ρ, η),−) if cmd(m,n) is next()
∆′′((n, qinit , ρ, η), a) = ((n, qnor , ρ[fst 7→ a], η),−)

∆′′((n, qrewind0 , ρ, η), a) =

{
((n, qrewind0 , ρ, η), L)
((n, qrewind1 , ρ[end 7→ 0], η), R)

if a 6= C
if a = C

∆′′((n, qrewind1 , ρ, η), a) = ((n, qnext , ρ, η), R)

∆′′((n, qnext , ρ, η), a) =

{
((n, qnor , ρ[current 7→ a], η), R)
((n, qlast , ρ[current 7→ ρ(fst), end 7→ 1], η,−)

if a 6= B
if a = B

∆′′((n, qreturn0 , ρ, η), a) =

{
((n, qreturn0 , ρ, η), R)
((n, qreturn1 , ρ, η), R)

if a 6= B
if a = B

∆′′((n, qreturn1 , ρ, η), a) =

{
((n, qf , ρ, η),−)
((n, qerr , ρ, η),−)

if ρ(result) = a
if ρ(result) 6= a

Example. Let us do a run of Aτ∗G for Figure 1 on C231B 3. Define

ρ0
4
= {fst 7→ 0, current 7→ 0, end 7→ 0, result 7→ 0}

ρ1
4
= ρ0[fst 7→ 2] ρ2

4
= ρ1[current 7→ 3]

ρ3
4
= ρ1[current 7→ 1] ρ4

4
= ρ1[current 7→ 2, end 7→ 1]

ρ5
4
= ρ4[result 7→ 3]

(ns, q0, ρ0, η0)C 231B 3 ` C(ns, qinit , ρ0, η0)231B 3 ` C(ns, qnor , ρ1, η0)231B 3
` C(n1, qrewind0 , ρ1, η0)231B 3 ` (n1, qrewind0 , ρ1, η0)C 231B 3
` C(n1, qrewind1 , ρ1, η0)231B 3 ` C2(n1, qnext , ρ1, η0)31B 3 ` C23(n1, qtl , ρ2, η0)1B 3
` C23(n2, qtl , ρ2, η0[m 7→ 3])1B 3 ` C23(n3, qtl , ρ2, η0[m 7→ 3, n 7→ 3])1B 3
` C23(n4, qtl , ρ2, η0[m 7→ 3, n 7→ 3])1B 3 ` C23(n5, qtl , ρ2, η0[m 7→ 3, n 7→ 3])1B 3
` C23(n6, qtl , ρ2, η0[m 7→ 3, n 7→ 3])1B 3 ` C23(n2, qnext , ρ2, η0[m 7→ 3, n 7→ 3])1B 3
` C231(n2, qtl , ρ3, η0[m 7→ 3, n 7→ 3])B 3 ` C231(n3, qtl , ρ3, η0[m 7→ 3, n 7→ 1])B 3
` C231(n5, qtl , ρ3, η0[m 7→ 3, n 7→ 1])B 3 ` C231(n6, qtl , ρ3, η0[m 7→ 3, n 7→ 1])B 3
` C231(n2, qnext , ρ3, η0[m 7→ 3, n 7→ 1])B 3 ` C231(n2, qlast , ρ4, η0[m 7→ 3, n 7→ 1])B 3
` C231(n3, qlast , ρ4, η0[m 7→ 3, n 7→ 2])B 3 ` C231(n5, qlast , ρ4, η0[m 7→ 3, n 7→ 2])B 3
` C231(n7, qlast , ρ4, η0[m 7→ 3, n 7→ 2])B 3 ` C231(ne, qreturn0 , ρ5, η0[m 7→ 3, n 7→ 2])B 3
` C231B (ne, qreturn1 , ρ5, η0[m 7→ 3, n 7→ 2])3 ` C231B (ne, qf , ρ5, η0[m 7→ 3, n 7→ 2])3

18

D Programs Reduced from Checking m-Commutative

Here we give additional information to the experiments. The source code of the 5 sets of ex-
amples are given below in Figure 8. For CBMC, we use the parameter --unwind N+1. For
CPACHECKER, we use the parameter -preprocess -config octagonAnalysis.properties

for octagon domain analysis and -preprocess -setprop cpa.predicate.maxArrayLength=N

-config predicateAnalysis-PredAbsRefiner-ABElf.properties for predicate abstrac-
tion via interpolation. For KLEE, we do not use any additional parameter.

int sum(int x[N])
{
int i, ret;
ret=0;
for(i=0;i<N;i++)
{
ret=ret+x[i];

}
return ret;

}

int main ()
{
int x[N],temp,ret,

ret2,retm;
ret=sum(x);

temp=x[0];
x[0]=x[1];
x[1]=temp;
ret2=sum(x);

temp=x[0];
int i=0;
for(;i<N-1;i++)
x[i]=x[i+1];

x[N-1]=temp;
retm=sum(x);

assert(ret==ret2
&&ret==retm);

return 1;
}

int avg(int x[N])
{
int i;
int ret;
ret=0;
for(i=0;i<N;i++)
{
ret=ret+x[i];

}
return ret/N;

}

int main ()
{
int x[N],temp,ret,

ret2,retm;
ret=avg(x);

temp=x[0];
x[0]=x[1];
x[1]=temp;
ret2=avg(x);

temp=x[0];
int i=0;
for(;i<N-1;i++)
x[i]=x[i+1];

x[N-1]=temp;
retm=avg(x);

assert(ret==ret2
&&ret==retm);

return 1;
}

int max(int x[N])
{
int i;
int ret;
ret=0;
for (i=0;i<N;i++)
{
ret=ret<x[i]?

x[i]:ret;
}
return ret;

}

int main ()
{
int x[N],temp,ret,

ret2,retm;
ret=max(x);

temp=x[0];
x[0]=x[1];
x[1]=temp;
ret2=max(x);

temp=x[0];
int i=0;
for(;i<N-1;i++)
x[i]=x[i+1];

x[N-1]=temp;
retm=max(x);

assert(ret==ret2
&&ret ==retm);

return 1;
}

int sep(int x[N])
{
int i;
int ret=0;
for(i=0;i<N;i++){
if(x[i]%2==0)
ret++;

else
ret--;

}
return ret;

}

int main ()
{
int x[N],temp,ret,

ret2,retm;
ret=sep(x);

temp=x[0];
x[0]=x[1];
x[1]=temp;
ret2=sep(x);

temp=x[0];
int i=0;
for(;i<N-1;i++)
x[i]=x[i+1];

x[N-1]=temp;
retm=sep(x);

assert(ret==ret2
&&ret ==retm);

return 1;
}

int dis(int x[N])
{
int i;
int ret;
ret=0;
int cnt=0;
for (i=0;i<N;i++)
{
if(x[i]>100000)
{
ret=ret+x[i];
cnt=cnt+1;

}
}
if(cnt!=0)
return ret/cnt;

else
return 0;

}

int main ()
{
int x[N],temp,ret,

ret2,retm;
ret=dis(x);

temp=x[0];
x[0]=x[1];
x[1]=temp;
ret2=dis(x);

temp=x[0];
int i=0;
for(;i<N-1;i++)
x[i]=x[i+1];

x[N-1]=temp;
retm=dis(x);

assert(ret==ret2
&&ret ==retm);

return 1;
}

int rangesum(int x[N])
{
int i;
int ret;
ret=0;
int cnt=0;
for (i=0;i<N;i++)
{
if(i>N/2)
{
ret=ret+x[i];
cnt=cnt+1;

}
}
if(cnt!=0)
return ret/cnt;

else
return 0;

}

int main ()
{
int x[N],temp,ret,

ret2,retm;
ret=rangesum(x);

temp=x[0];
x[0]=x[1];
x[1]=temp;
ret2=rangesum(x);

temp=x[0];
int i=0;
for(;i<N-1;i++)
x[i]=x[i+1];

x[N-1]=temp;
retm=rangesum(x);

assert(ret==ret2
&&ret ==retm);

return 1;
}

(a)sumN.c (b)avgN.c (c)maxN.c (d)sepN.c (e)disN.c (f)rangesumN.c

Fig. 8: Source code of the examples

19

