
Ultimate Automizer
and the Search for Perfect Interpolants

(Competition Contribution)

Matthias Heizmann, Yu-Fang Chen, Daniel Dietsch, Marius Greitschus,
Jochen Hoenicke, Yong Li, Alexander Nutz, Betim Musa, Christian Schilling,

Tanja Schindler, and Andreas Podelski

University of Freiburg, Germany

Abstract. Ultimate Automizer is a software verifier that generalizes
proofs for traces to proofs for larger parts for the program. In recent
years the portfolio of proof producers that are available to Ultimate
has grown continuously. This is not only because more trace analysis
algorithms have been implemented in Ultimate but also due to the
continuous progress in the SMT community. In this paper we explain how
Ultimate Automizer dynamically selects trace analysis algorithms and
how the tool decides when proofs for traces are ”good” enough for using
them in the abstraction refinement.

1 Verification Approach

Ultimate Automizer (in the following called Automizer) is a software veri-
fier that is able to check safety and liveness properties. The tool implements an
automata-based [6] instance of the CEGAR scheme. In each iteration, we pick a
trace (which is a sequence of statements) that leads from the initial location to
the error location and check whether the trace is feasible (i.e., corresponds to an
execution) or infeasible. If the trace is feasible, we report an error to the user;
otherwise we compute a sequence of predicates along the trace as a proof of the
trace’s infeasibility. We call such a sequence of predicates a sequence of inter-
polants since each predicate “interpolates” between the set of reachable states
and the set of states from which we cannot reach the error. In the refinement step
of the CEGAR loop, we try to find all traces whose infeasibility can be shown
with the given predicates and subtract these traces from the set of (potentially
spurious) error traces that have not yet been analyzed. We use automata to
represent sets of traces; hence the subtraction is implemented as an automata
operation. The major difference to a classical CEGAR-based predicate abstrac-
tion is that we never have to do any logical reasoning (e.g., SMT solver calls)
that involves predicates of different CEGAR iterations.

We use this paper to explain how our tool obtains the interpolants that
are used in the refinement step. The Ultimate program analysis framework
provides a number of techniques to compute interpolants for an infeasible trace.
We group them into the following two categories.



Path program focused techniques (abstract interpretation [5], constraint-
based invariant synthesis) These techniques do not consider the trace in iso-
lation but in the context of the analyzed program. The program is projected
to the statements that occur in the trace; this projection is considered as a
standalone program called path program. The techniques try to find a Floyd-
Hoare style proof for the path program, which shows the infeasibility of all
the path program’s traces. If such a proof is found, the respective predicates
are used as a sequence of interpolants. These interpolants are “good enough”
to ensure that in the refinement step all (spurious) error traces of the path
program are ruled out.

Trace focused techniques (Craig interpolation, symbolic execution with
unsatisfiable cores [4]) These techniques consider only the trace. Typically
they are significantly less expensive and more often successful than tech-
niques from the first category. However, we do not have any guarantee that
their interpolants help to prove the infeasibility of more than one trace.

Recent improvements of Automizer were devoted to techniques that fall
into the second category. Our basic paradigms are: (1) use different techniques
to compute many sequences of interpolants, (2) evaluate the “quality” of each
sequence, (3) prefer “good” sequences in the abstraction refinement.

In contrast to related work [3] we have only one measure for the quality of a
sequence of interpolants: We check if the interpolants constitute a Floyd-Hoare
annotation of the path program for the trace. If this is the case, we call the
sequence a perfect sequence of interpolants. If the sequence is perfect, we use it
for the abstraction refinement. If the sequence is not perfect, we only use it if
no better sequence is available. Our portfolio of trace focused techniques is quite
large for three reasons.

1. We use different algorithms for interpolation. Several SMT solvers have im-
plemented algorithms for Craig interpolation and we use these as a black
box. Furthermore, Ultimate provides an algorithm [4] to construct an ab-
straction of the trace from an unsatisfiable core provided by an SMT solver.
Afterwards, two sequences of predicates, one with the sp predicate trans-
former, the other with the wp predicate transformer, are constructed via
symbolic execution.

2. We use different SMT solvers. Typically, different SMT solvers implement
different algorithms and hence the resulting Craig interpolants or unsatisfi-
able cores are different.

3. We have several algorithms that produce an abstraction of a trace but pre-
serve the infeasibility of the trace. We can apply these as a preprocessing of
the interpolant computation.
All our algorithms follow the same scheme: We replace all statements of
the trace by skip statements. Then we incrementally check feasibility of the
trace and undo replacements as long as the trace is feasible. Examples for the
undo order of our algorithms are: (1) Apply the undo first to statements that
occur outside of loops, follow the nesting structure of loops for further undo
operations. (2) Do the very same as the first algorithm but start inside loops.



(3) Apply the undo to statements with large constants later. (4) Apply the
undo to statements whose SMT representation is less expensive first (e.g.,
postpone floating point arithmetic).

At first glance it looks like a good idea to apply different techniques to a
given trace for as long as no perfect sequence of interpolants was found. This
has however turned out to be a bad idea for the following reasons.

1. The path program might be unsafe and we just have to unwind a loop a few
times until we find a feasible counterexample.

2. The path program might be so intricate that we are unable to find a loop in-
variant. However, there are cases where the loop can only be taken for a small
number of times and our tool can prove correctness by proving infeasibility
of each trace individually.

3. The path program might be so intricate that we are unable to find a loop
invariant immediately. But if we consider certain unwindings of the loop
(e.g., the loop is taken an even number of times) our interpolants will form
a loop invariant.

We conclude that per iteration of the CEGAR loop (resp. per trace) we only
want to apply a fixed number of techniques. According to our experiments there
are some techniques that are on average more successful than others; however,
no technique is strictly superior to another. Hence it is neither a good idea to
always apply the n typically most successful techniques nor to take n random
techniques in each iteration.

We follow an approach that we call path program-based modulation. We have
a preferred sequence in which we apply our techniques. Whenever we see a new
trace we start at the beginning of this sequence. Whenever we see a trace that is
similar to a trace we have already seen, we continue in the sequence of techniques
at the point where we stopped for the similar trace. Our notion of similarity is:
Two traces are similar if they have the same path program.

Hence we make sure that for every path program every technique is eventually
applied to some trace of the path program.

2 Project, Setup and Configuration

Automizer is developed on top of the open-source program analysis framework
Ultimate1. Ultimate is mainly developed at the University of Freiburg and re-
ceived contributions from more than 50 people. The framework and Automizer
are written in Java, licensed under LGPLv3 , and their source code is available
on Github2.

Automizer’s competition submission is available as a zip archive3. It re-
quires a current Java installation (≥ JRE 1.8) and a working Python 2.7 installa-

1 https://ultimate.informatik.uni-freiburg.de
2 https://github.com/ultimate-pa/ultimate
3 https://ultimate.informatik.uni-freiburg.de/downloads/svcomp2018/

UltimateAutomizer-linux.zip

https://ultimate.informatik.uni-freiburg.de
https://github.com/ultimate-pa/ultimate
https://ultimate.informatik.uni-freiburg.de/downloads/svcomp2018/UltimateAutomizer-linux.zip
https://ultimate.informatik.uni-freiburg.de/downloads/svcomp2018/UltimateAutomizer-linux.zip


tion. The archive contains Linux binaries for Automizer and the required SMT
solvers Z34, CVC45, and Mathsat6, as well as a Python script, Ultimate.py.
The Python script translates command line parameters and results between Ul-
timate and SV-COMP conventions, and ensures that Ultimate is correctly
configured to run Automizer. Automizer is invoked through Ultimate.py by
calling

./Ultimate.py --spec prop.prp --file input.c --architecture

32bit|64bit --full-output [--validate witness.graphml]

where prop.prp is the SV-COMP property file, input.c is the C file that
should be analyzed, 32bit or 64bit is the architecture of the input file, and
--full-output enables writing all output instead of just the status of the prop-
erty to stdout. The option --validate witness.graphml is only used during
witness validation and allows the specification of a file containing a violation [2]
or correctness witness [1].

Depending on the status of the property, a violation or correctness witness
may be written to the file witness.graphml. Automizer is not only able to
generate witnesses, but also to validate them7. In any case, the complete output
of Automizer is written to the file Ultimate.log.

The benchmarking tool BenchExec8 contains a tool-info module that pro-
vides support for Automizer (ultimateautomizer.py). Automizer partici-
pates in all categories, which is also specified in its SV-COMP benchmark defini-
tion9 file uautomizer.xml. In its role as witness validator, Automizer supports
all categories except ConcurrencySafety, which is specified in the corresponding
SV-COMP benchmark definition files uautomizer-validate-*-witnesses.xml.

References

1. D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. Correctness Witnesses: Ex-
changing Verification Results between Verifiers. In FSE 2016, pages 326–337, 2016.

2. D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness Val-
idation and Stepwise Testification across Software Verifiers. In ESEC/FSE 2015,
pages 721–733, 2015.

3. D. Beyer, S. Löwe, and P. Wendler. Refinement Selection. In SPIN 2015, pages
20–38, 2015.

4. D. Dietsch, M. Heizmann, B. Musa, A. Nutz, and A. Podelski. Craig vs. Newton in
Software Model Checking. In ESEC/SIGSOFT FSE, pages 487–497. ACM, 2017.

5. M. Greitschus, D. Dietsch, and A. Podelski. Loop Invariants from Counterexamples.
In SAS 2017, pages 128–147, 2017.

6. M. Heizmann, J. Hoenicke, and A. Podelski. Software model checking for people
who love automata. In CAV, pages 36–52, 2013.

4 https://github.com/Z3Prover/z3
5 https://cvc4.cs.nyu.edu/
6 http://mathsat.fbk.eu/
7 https://github.com/sosy-lab/sv-witnesses
8 https://github.com/sosy-lab/benchexec
9 https://github.com/sosy-lab/sv-comp

https://github.com/Z3Prover/z3
https://cvc4.cs.nyu.edu/
http://mathsat.fbk.eu/
https://github.com/sosy-lab/sv-witnesses
https://github.com/sosy-lab/benchexec
https://github.com/sosy-lab/sv-comp

	Ultimate Automizer and the Search for Perfect Interpolants (Competition Contribution) 

