
Extending Automated Compositional Verification
to the Full Class of Omega-Regular Languages?

Azadeh Farzan1 , Yu-Fang Chen2,
Edmund M. Clarke1, Yih-Kuen Tsay2, and Bow-Yaw Wang3

1Carnegie Mellon University 2National Taiwan University 3Academia Sinica

Abstract. Recent studies have suggested the applicability of learning
to automated compositional verification. However, current learning al-
gorithms fall short when it comes to learning liveness properties. We
extend the automaton synthesis paradigm for the infinitary languages
by presenting an algorithm to learn an arbitrary regular set of infinite
sequences (an ω-regular language) over an alphabet Σ. Our main result
is an algorithm to learn a nondeterministic Büchi automaton that recog-
nizes an unknown ω-regular language. This is done by learning a unique
projection of it on Σ∗ using the framework suggested by Angluin for
learning regular subsets of Σ∗.

1 Introduction

Compositional verification is an essential technique for addressing the state ex-
plosion problem in Model Checking [1, 7, 8, 10]. Most compositional techniques
advocate proving properties of a system by checking properties of its components
in an assume-guarantee style. The essential idea is to model check each compo-
nent independently by making an assumption about its environment, and then
discharge the assumption on the collection of the rest of the components. In the
paradigm of automated compositional reasoning through learning [8], system be-
haviors and their requirements are formalized as regular languages. Assumptions
in premises of compositional proof rules are often regular languages; their corre-
sponding finite-state automata can therefore be generated by learning techniques
for regular languages.

In automated compositional reasoning, a compositional proof rule is chosen a
priori. The rule indicates how a system can be decomposed. Below is an example
of a simple rule:

M2 |= A M1||A |= P

M1||M2 |= P

for two components M1 and M2, and assumption A, and a property P . In-
tuitively, this rule says that if M2 guarantees A, and M1 guarantees P in an
environment that respects A, then the system composed of M1 and M2 guaran-
tees P . The goal is to automatically generate the assumption A by learning. One
? This research was sponsored by the iCAST project of the National Science Coun-

cil, Taiwan, under the grant no. NSC96-3114-P-001-002-Y and the Semiconductor
Research Corporation (SRC) under the grant no. 2006-TJ-1366.

2

naturally wishes to verify all sorts of properties using this framework. However,
all existing algorithms fall short when it comes to learning assumptions which
involve liveness properties. In this paper, we present an algorithm that fills this
gap and extends the learning paradigm to the full class of ω-regular languages.

The active learning model used in automated compositional reasoning in-
volves a teacher who is aware of an unknown language, and a learner whose
goal is to learn that language. The learner can put two types of queries to the
teacher. A membership query asks if a string belongs to the unknown language.
A equivalence query checks whether a conjecture automaton recognizes the un-
known language. The teacher provides a counterexample if the conjecture is in-
correct [2]. More specifically, in the process of learning an assumption, an initial
assumption is generated by the learner through a series of membership queries.
An equivalence query is then made to check if the assumption satisfies premises
of the compositional proof rule. If it does, the verification process terminates
with success. Otherwise, the learner refines the assumption by the returned
counterexample and more membership queries. Since the weakest assumption
either establishes or falsifies system requirements, the verification process even-
tually terminates when the weakest assumption is attained. A novel idea in [8]
uses model checkers to resolve both membership and equivalence queries auto-
matically. By using Angluin’s L* [2] algorithm, the verification process can be
performed without human intervention.

The product of the learning algorithm L∗ is a deterministic finite-state au-
tomaton recognizing the unknown regular language [2]. By the Myhill-Nerode
Theorem, the minimal deterministic finite-state automaton can be generated
from the equivalence classes defined by the coarsest right congruence relation of
any regular language [12]. The L∗ algorithm computes the equivalence classes
by membership queries, and refines them with counterexamples returned by
equivalence queries. It can, in fact, infer the minimal deterministic finite-state
automaton for any unknown regular language.

Unfortunately, the L* algorithm cannot be directly generalized to learn ω-
regular languages. Firstly, deterministic Büchi automata are less expressive than
general Büchi automata. Inferred deterministic finite-state automata require
more than the Büchi acceptance condition to recognize arbitrary ω-regular lan-
guages. Secondly, equivalence classes defined by the coarsest right congruence
relation over an ω-regular language do not necessarily correspond to the states
of its automaton. The ω-regular language (a + b)∗aω has only one equivalence
class. Yet, there is no one-state ω-automaton with Büchi, Rabin, Streett, or even
Muller acceptance conditions that can recognize this language.

Maler and Pnueli [13] made an attempt to generalize L* for the ω-regular
languages. Their algorithm, Lω, learns a proper subclass of ω-regular languages
which is not expressive enough to cover liveness properties. This restricted class
has the useful property of being uniquely identifiable by the syntactic right con-
gruence. Thus, Lω has the advantage of generating the minimal deterministic
Muller automaton (isomorphic to the syntactic right congruence) recognizing a
language in the restricted class. The syntactic right congruence, however, can-

Learning Omega-Regular Languages 3

not be used to identify an arbitrary ω-regular language. Attempts to use more
expressive congruences [3, 20] have been unsuccessful.

Our main ideas are inspired by the work of Calbrix, Nivat, and Podelski [5].
Consider ultimately periodic ω-strings of the form uvω. Büchi [4] observed that
the set of ultimately periodic ω-strings characterizes ω-regular languages; two
ω-regular languages are in fact identical if and only if they have the same set of
ultimately periodic ω-strings. Calbrix et al. [5] show that the finitary language
{u$v | uvω ∈ L} is regular for any ω-regular language L. These properties help
uniquely identify a Büchi automaton for the regular language corresponding to
ultimately periodic ω-strings of an arbitrary ω-regular language. We develop a
learning algorithm for the regular language {u$v | uvω ∈ L} through member-
ship and equivalence queries on the unknown ω-regular language L. A Büchi
automaton accepting L can hence be constructed from the finite-state automa-
ton generated by our learning algorithm.

The active learning model and the algorithm L∗ were introduced by An-
gluin [2]. By exploiting the Myhill-Nerode theorem, the L∗ algorithm is able to
compute the minimal deterministic finite-state automaton for a given regular
language with a polynomial number of queries in the size of the target automa-
ton. The upper bound was later improved in [17].

2 Preliminaries

Let Σ be a finite set called the alphabet. A finite word over Σ is a finite sequence
of elements of Σ. An empty word is represented by ε. For two words u = u1 . . . un
and v = v1 . . . vn, define uv = u1 . . . unv1 . . . vm. For a word u, un is recursively
defined as uun−1 with u0 = ε. Define u+ =

⋃∞
i=1{ui}, and u∗ = {ε} ∪ u+. An

infinite word over Σ is an infinite sequence of elements of Σ. For a finite word
u, define the infinite word uω = uu . . . u Operators +, ∗, and ω are naturally
extended to sets of finite words.

A word u is a prefix (resp. suffix) of another word v if and only if there exists
a word w ∈ Σ∗ such that v = uw (resp. v = wu). A set of words S is called
prefix-closed (resp. suffix-closed) if and only if for all v ∈ S, if u is a prefix (resp.
suffix) of v then u ∈ S.

The set of all finite words on Σ is denoted by Σ∗. Σ+ is the set of all
nonempty words on Σ; therefore, Σ+ = Σ∗\{ε}. Let u be a finite word. |u| is
the length of word u with |ε| = 0. The set of all infinite words on Σ is denoted
by Σω. A language is a subset of Σ∗, and an ω-language is a subset of Σω.

A finite automaton A is a tuple (Σ,Q, I, F, δ) where Σ is an alphabet, Q
is a finite set of states, I ⊆ Q is a set of initial states, F ⊆ Q is a set of final
states, and δ ⊆ Q×Σ ×Q is the transition relation. A finite word u = u1 . . . un
is accepted by A if and only if there exists a sequence qi0u1qi1u2 . . . unqin such
that qi0 ∈ I, qin ∈ F , and for all j, we have qij ∈ Q and (qij−1 , uj , qij) ∈ δ.
Define L(A) = {u | u is accepted by A}. A language L ⊆ Σ∗ is regular if and
only if there exists an automaton A such that L = L(A).

4

A Büchi automaton has the same structure as a finite automaton, except that
it is intended for recognizing infinite words. An infinite word u = u1 . . . un . . .
is accepted by a Büchi automaton A if and only if there exists a sequence
qi0u1qi1u2 . . . unqin . . . such that qi0 ∈ I, qij ∈ Q and (qij−1 , uj , qij) ∈ δ (for
all j), and there exists a state q ∈ F such that q = qij for infinitely many j’s.
Again, define L(A) = {u | u is accepted by A}. An ω-language L ⊆ Σω is ω-
regular if and only if there exists a Büchi automaton A such that L = L(A).
For an ω-language L, let UP(L) = {uvω | u ∈ Σ∗, v ∈ Σ+, uvω ∈ L}. Words of
the form uvω are called the ultimately periodic. Let α be an ultimately periodic
word. A word v ∈ Σ+ is a period of α if there exists a word u ∈ Σ∗ such that
α = uvω.

Theorem 1. (Büchi)[4] Let L and L′ be two ω-regular languages. L = L′ if and
only if UP(L) = UP(L′).

The above theorem implies that the set of ultimately periodic words of an ω-
regular language L uniquely characterizes L. Define L$ on Σ ∪ {$} as

L$ = {u$v | uvω ∈ L}.

Intuitively, the symbol $ marks the beginning of the period and separates it from
the prefix of the ω-word uvω. Note that L$ ⊆ Σ∗$Σ+ We can then say that L$

uniquely characterizes L.

Theorem 2. (Büchi)[4] If L is an ω-regular language, then there exists regular
languages L1, . . . , Ln and L′1, . . . , L

′
n such that L =

⋃n
i=1 Li(L

′
i)
ω.

Theorem 3. (Calbrix, Nivat, and Podelski)[5] L$ is regular.

Moreover, one can show that the syntactic congruence of the regular language
L$ and Arnold’s congruence [3] for L coincide on the set Σ+ [6].

3 Ultimately Periodic Words

Define an equivalence relation on the words in Σ∗$Σ+:

Definition 1. The equivalence relation $ on Σ∗$Σ+ is defined by:

u$v $ u′$v′ ⇐⇒ uvω = u′v′ω

u, u′ ∈ Σ∗ and v, v′ ∈ Σ+.

Based on the ω-word abω, we have a$b $ ab$b $ ab$bb $. . . $ abk$bk
′
, for all

k, k′. Therefore, the equivalence class [a$b]$ is equal to the set of words ab∗$b+.

Definition 2. An equivalence relation ≡ saturates a language L if and only if
for two words u and v, where u ≡ v, we have u ∈ L implies v ∈ L.

Learning Omega-Regular Languages 5

Let L be an ω-regular language, and L$ its corresponding regular language as
defined above. Let u$v be a word in L$ and u′$v′ ∈ Σ∗$Σ+ such that u$v $
u′$v′. Since uvω = u′v′ω, we have u′v′ω ∈ L, and therefore (by definition) u′$v′ ∈
L$. This implies the following Proposition:

Proposition 1. The equivalence relation $ saturates L$.

LetR ⊆ Σ∗$Σ+ be a regular language. Proposition 1 suggests that saturating
$ is a necessary condition for R to be L$ for some ω-regular language L. The
interesting point is that one can show that it is sufficient as well. This can be
done by constructing a Büchi automaton B that recognizes L directly from the
automaton A recognizing R [5]. Since this construction is used in our algorithm,
we describe it here. We first need the following lemma:

Lemma 1. (Calbrix, Nivat, and Podelski) [5] Let L,L′ ⊆ Σ∗ be two regular
languages such that LL′∗ = L and L′+ = L′. Then, α ∈ UP(LL′ω) if and only
if there exist u ∈ L and v ∈ L′ such that α = uvω.

Let R ⊆ Σ∗$Σ+ be a regular language. Let A = (Σ ∪ {$}, Q, I, F, δ) be a
deterministic automaton recognizing R. Define Q$ to be the set of states that
can be reached by starting in an initial state and reading the part of a word
u$v ∈M that precedes the $. Formally,

Q$ = {q ∈ Q | ∃u$v ∈ R,∃qi ∈ I, q = δ(qi, u)}

For each state q ∈ Q$, let

Mq = {u | ∃qi ∈ I, δ(qi, u) = q} (1)
Nq = {v | ∃qf ∈ F, δ(q, $v) = qf}. (2)

For each q, Mq and Nq are regular languages; one can easily construct an au-
tomaton accepting each by modifying A. Moreover, the definitions of Mq and
Nq along side the fact R ⊆ Σ∗$Σ+, implies that R =

⋃
q∈Q$

Mq$Nq.
Next, we partition Nq based on the final states of the automaton. For each

final state qf ∈ F and q ∈ Q$, let the regular language Nq,qf
be

Nq,qf
= {v | δ(q, v) = q ∧ δ(q, $v) = qf ∧ δ(qf , v) = qf} (3)

Finally, we define the ω-regular language L as

L =
⋃

(q,qf)∈Q$×F

MqN
ω
q,qf

. (4)

We refer to L as ω(R) later in this paper to indicate the fact that it is the corre-
sponding ω-regular language of R. Next we show that L is the ω-regular language
whose corresponding regular language is indeed R. The following theorem states
this result:

Theorem 4. Let R ⊆ Σ∗$Σ+ be a regular language that is saturated by $.
Then, there exists an ω-regular language L such that R = L$.

6

Proof. See Appendix A.1 for the proof. ut

One can directly build a Büchi automaton recognizing L from A. The set Q$

can be effectively computed. For each state q ∈ Q$, the languageMq is recognized
by the automaton (Σ,Q, I, {q}, δ). For each final state qf , the language Nq,qf

is
the intersection of the languages L(Σ,Q, {q}, {q}, δ), L(Σ,Q, {δ(q, $)}, {qf}, δ),
and L(Σ,Q, {qf}, {qf}, δ). For each pair (q, qf), once we have DFAs recogniz-
ing Mq and Nq,qf

, we can easily construct1 a Büchi automaton recognizing
MqN

ω
q,qf

. The Büchi automaton recognizing L is the union of these automata.
Each MqN

ω
q,qf

is recognized by an automaton of size at most |A| + |A|3, which
means that L is recognized by an automata of size at most |A|3 + |A|5.

A question that naturally arises is what can one say about the result of
the above construction if R is not saturated by $? As we will see in Section
4, we need to construct Büchi automata from DFAs guessed in the process of
learning which may not be necessarily saturated by $. For a regular language
R ⊆ Σ∗$Σ+ which is not saturated by $ and L =

⋃
(q,qf)∈Q$×F MqN

ω
q,qf

, it is
not necessarily the case that R = L$ (compare with the statement of Theorem
4). For example, R = {a$b} is not saturated by $ since it contains an element
of the class [a$b]$ (namely, a$b), but does not contain the whole class (which
is the set ab∗$b+). But, there are a number of other essential properties that L
has:

Proposition 2. If R = U$ for some arbitrary ω-regular language U , then L =
U , where L is defined by (4).

Proof. Direct consequence of Theorem 4. ut

Proposition 3. Let [u$v]$ denote the equivalence class of the word u$v by the
relation $. For each pair of words (u, v) ∈ Σ∗ × Σ+, if [u$v]$ ∩ R = ∅ then
uvω 6∈ L where L is defined by (4).

Proof. If uvω ∈ L, there exist a string u′ in some Mq and a string v′ in some
Nq,qf

such that u′v′ω = uvω (Lemma 1). Since u′ is in Mq and v′ is in Nq,qf
, we

have u′$v′ in R. Because u′v′ω = uvω, we have u′$v′ ∈ [u$v]$, which contradicts
[u$v]$ ∩R = ∅. ut

Proposition 4. For each pair of words (u, v) ∈ Σ∗ × Σ+, if [u$v]$ ⊆ R then
uvω ∈ L where L is defined by (4).

Proof. If [u$v]$ ⊆ R, we can find k and k′ satisfying uvk(vk
′
)ω ∈ L using the

same approach as in the (R ⊆ L$) proof of Theorem 4. Because uvω = uvk(vk
′
)ω,

we have uvω ∈ L. ut
1 One can connect the final states of A(Mq) to the initial states of Aω(Nq,qF) by
ε transitions, and let the final states of Nq,qf be the final states of the resulting
Büchi automaton. Aω(Nq,qF) can be obtained from A(Nq,qF) by normalizing it and
connecting the final state to the initial state by an epsilon transition [16].

Learning Omega-Regular Languages 7

4 Learning ω-Regular Languages

In this section, we present an algorithm that learns an unknown ω-regular lan-
guage and generates a nondeterministic Büchi automaton which recognizes L as
the result. There are well-known and well-studied algorithms for learning a de-
terministic finite automaton (DFA) [2, 17]. We propose an approach which uses
the L* algorithm [2] as the basis for learning an unknown ω-regular language L.

The idea behind L* is learning by experimentation. The learner has the
ability to make membership queries. An oracle (a teacher who knows the target
language), on any input word v, returns a yes-or-no answer depending on whether
v belongs to the target language. The learning algorithm thus chooses particular
inputs to classify, and consequently make progress. The learner also has the
ability to make equivalence queries. A target language is guessed by the learner,
which will then be verified by the teacher through an equivalence check against
the target language. The teacher returns yes when the conjecture is correct,
or no accompanied by a counterexample which witnesses the inequality. This
counterexample can be a positive counterexample (a word that belongs to the
target language but does not belong to the conjecture language) or a negative
counterexample (a word that does not belong to the the target language but
belongs to the conjecture language). We refer the reader unfamiliar with L*
to [2] for detailed information on the algorithm.

The goal of our learning algorithm is to come up with a nondeterministic
Büchi automaton that recognizes an unknown ω-regular language L. We assume
that there is a teacher who can correctly answer the membership and equivalence
queries on L as discussed above. The idea is to learn the language L$ instead of
learning L directly. One can reuse the core of the L* algorithm here, but many
changes have to be made. The reason is that the membership and equivalence
queries allowed in the setting of our algorithm are for the ω-regular language L
and not for the regular language L$. One has to translate the queries and their
responses back and forth from the L$ level to the L level.

Membership Queries: The L* algorithm frequently needs to ask questions of
the form: “does the string w belong to the target language L$?”. We need to
translate this query into one that can be posed to our teacher. The following
simple steps perform this task:

1. Does w belong to Σ∗$Σ+? If no, then the answer is “NO”. If yes, then go
to the next step.

2. Let w = u$v. Does uvω belong to L? if no, then the answer is “NO”. If yes,
then the answer is “YES”.

We know that L$ ⊆ Σ∗$Σ+ which helps us filter out some strings without asking
the teacher. If we have w ∈ Σ∗$Σ+, then w is of the form u$v which corresponds
to the ultimately periodic word uvω. The teacher can respond to the membership
query by checking whether uvω belongs to L. The answer to this query indicates
whether u$v should belong to our current conjecture. Note that by the definition
of L$, we have u$v ∈ L$ ⇔ uvω ∈ L.

8

Equivalence Queries: L* generates conjecture DFAs that need to be verified,
and therefore a question of the form “Is the conjecture language Mi equivalent
to the target language L$?” needs to be asked. We need to translate this query
into an equivalent one that can be posed to the teacher:

1. Is Mi a subset of Σ∗$Σ+? If no, get the counterexample and continue with
L*. If yes, then go the next step.

2. Is ω(Mi) (the corresponding ω-regular language of Mi) equivalent to L?
If yes, we are done. If no, we get an ultimately periodic word c that is
a (negative or positive) counterexample to the equivalence check. Return
“NO” and a finitary interpretation of c (described below) to L*.

Again, the Mi ⊆ Σ∗$Σ+ check works as a preliminary test to filter out conjec-
tures that are obviously not correct. If a conjecture language (DFA)Mi passes the
first test, we construct its corresponding Büchi automaton ω(Mi). The teacher
can then respond by checking the equivalence between L and ω(Mi). If they are
not equivalent, the teacher will return a counterexample witnessing the nonequiv-
alence. In order to proceed with L*, we have to translate these ω-words to finite
words that are counterexamples to the equivalence of Mi and L$. To do this,
for the counterexample uvω, we construct a DFA that accepts [u$v]$. There are
two cases for each counterexample uvω:

– The word uvω is a positive counterexample: the word uvω should be in ω(Mi)
but is not. Since uvω 6∈ ω(Mi), by Proposition 4, [u$v]$ 6⊆Mi and there ex-
ists a word u′$v′ ∈ [u$v]$ such that u′$v′ is not in Mi. Then u′$v′ can serve
as an effective positive counterexample for the L* algorithm. To find u′$v′, it
suffices to check the emptiness of the language [u$v]$−Mi. There are various
ways in which one can compute [u$v]$. One way is by direct construction
of a DFA accepting [u$v]$ from the Büchi automaton that accepts the lan-
guage containing a single word uvω. There is a detailed description of this
construction in [5]. We use a different construction in our implementation
which is presented in Appendix A.2.

– The word uvω is a negative counterexample: the word uvω should not be in
ω(Mi), but it is. Since uvω ∈ L, by Proposition 3, [u$v]$∩Mi 6= ∅ and there
exists a word u′$v′ ∈ [u$v]$ such that u′$v′ ∈ Mi. One can find this word
by checking emptiness of Mi∩ [u$v]$. Then u′$v′ works as a proper negative
counterexample for the L* algorithm.

Here is why the above procedure works: A conjecture M may not be saturated by
$. Consider the case presented in Figure 1(a). There are four equivalence classes:
[u1$v1]$ is contained in M , [u2$v2]$ and [u3$v3]$ have intersections with M
but are not contained in it, and [u4$v4]$ is completely outside M . Now assume
L (as defined by 4) is the ω-regular language corresponding to M . Proposition 4
implies that u1v

ω
1 ∈ L. Proposition 3 implies that u4v

ω
4 6∈ L. However, one

cannot state anything about u2v
ω
2 and u3v

ω
3 with certainty; they may or may

not be in L. Let us assume (for the sake of the argument) that u2v
ω
2 ∈ L and

u3v
ω
3 6∈ L. This means that L$ (which is not equivalent to M) is actually the

Learning Omega-Regular Languages 9

u2$v2

u3$v3

u4$v4

u1$v1

M

u2$v2

u3$v3

u4$v4

u1$v1

M

(a) (b)

u2$v2

u3$v3

u4$v4

M

u1$v1

u2$v2

u3$v3

u4$v4

M

u1$v1

(c) (d)

Fig. 1. The Case of Non-saturation

shaded area in Figure 1(b). Now, if L is not the correct conjecture, one will end
up with an ω-word uvω as a counterexample. As mentioned above, we have one
of the following two cases:

(1) The word uvω is a negative counterexample. There are two possibilities for
the class [u$v]$:
• [u$v]$ ⊆ M : This case is rather trivial. Any word in [u$v]$, including
u$v, belongs to M while it should not. Therefore, u$v can serve as a
proper negative counterexample for the next iteration of L*.

• [u$v]$ 6⊆ M : This case is more tricky. looking back at Figure 1(b), it
is similar to assuming that u2v

ω
2 was wrongly included in L. But since

some of the strings in [u$v]$ do not belong to M , an arbitrary string from
[u$v]$ does not necessarily work as a negative counterexample for the
next iteration of L*. One has to find a string which is in both [u$v]$ and
M , which means it belongs to [u$v]$∩M . The shaded area in Figure 1(c)
demonstrates this set for the example. Note that [u$v]$ ∩M cannot be
empty; By Proposition 3, [u$v]$ ∩M = ∅ implies that uvω 6∈ L which is
a contradiction.

(2) The word uvω is a positive counterexample. There are two possibilities for
the class [u$v]$:
• [u$v]$∩M = ∅: This case is rather trivial. All words in [u$v]$, including
u$v, do not belong to M while they should. Therefore, u$v can serve as
a proper positive counterexample for the next iteration of L*.

• [u$v]$∩M 6= ∅: This case is more tricky. looking back at Figure 1(b), it is
similar to assuming that u3v

ω
3 was wrongly left out of L. But since some

of the strings in [u$v]$ do belong to M , an arbitrary string from that

10

class is not necessarily going to work as a proper positive counterexample
for the next iteration of L*. We have to make sure to find one that
is in [u$]$ but not in M . The set [u$v]$ −M contains such a string
which is guaranteed to make L* progress. The shaded area in Figure 1(d)
demonstrates this set for the example. Note that [u$v]$ −M cannot be
empty; [u$v]$ − M = ∅ implies that [u$v]$ ⊆ M in which case by
Proposition 4, we have uvω ∈ L, which is a contradiction.

Below, we give a more technical description of our algorithm followed by an
example for greater clarity.

Definition 3. An observation table is a tuple 〈S,E, T 〉 where S is a set of prefix-
closed words in Σ∗ such that each word in S represents a syntactic right congru-
ence class of L$, E is a set of suffix-closed strings in Σ∗ such that each word in
E is a distinguishing word, and T : (S ∪ SΣ)× E −→ {−,+} is defined as

T (α, σ) =
{

+ if ασ ∈ L$

− if ασ 6∈ L$.

An observation table is closed if for every word s′ ∈ SΣ, there exists a word
s ∈ S such that T (s, •) = T (s′, •) (where T (s, •) indicates the row of the table
which starts with s).

The goal of L* here is to learn L$ for an unknown ω-language L on alphabet
Σ ∪ {$}. Our initial setting is the same as L*; the distinguishing experiment
set E = {λ} and the congruence class set S = {λ}. We fill the table by asking
membership queries for each pair of strings (α, σ) ∈ (S ∪ SΣ) × E; a “NO”
response sets T (α, σ) = −, and a “YES” response sets T (α, σ) = +. Note that
the membership queries are translated as discussed above to a format appropriate
for the teacher.

q3 q5

a

b

a, b

b

a

a, b
q2 q4

q1q0
$

$
q7 q2 q3

q4

q5 q6
a b

a, b

a

b a, b

a, b

b

a

(a) DFA. (b) Büchi Automaton.

Fig. 2. First Iteration.

When the observation table is closed, a conjecture DFA A = (S,Σ, q0, F, δ),
where Q = {u|u ∈ S}, q0 = λ, δ = {(u, a, u′)|u′ ∈ S ∧ T (u′, •) = T (ua, •)}, and
F = {u|T (u, λ) = +} is constructed from the table.

We then check if M0 = L(A) is a subset of Σ∗$Σ+. If not, there is a coun-
terexample in L(A$)∩Σ∗$Σ+ from the language containment check, all of whose
suffixes are added to the set of distinguishing words E. If M0 ⊆ Σ∗$Σ+, we con-
struct a Büchi automaton B based on A (see Section 3), and perform the equiv-
alence check. The counterexamples are interpreted (as discussed above) and the

Learning Omega-Regular Languages 11

appropriate counterexamples are added to set E. We then proceed to another
iteration of this algorithm, until the target language is found.

Example 1. We demonstrate our algorithm by showing the steps performed on
a simple example. Assume that the target language is ab((a + b)∗a)ω. This ω-
expression corresponds to the liveness property: “a happens infinitely often in
a computation with the prefix ab” which cannot be learned using any of the
existing algorithms.

q0

q5

q1

a

b

a, b

a

b
q4

a, b
a

q2

q6 q3
$

$ q7 q1

q6

ab

a b

q5

a, ba

a, b

b

b

a

b

a

a

q2

q4

(a) DFA. (b) Büchi Automaton.

Fig. 3. Second Iteration.

Table 1(a) shows the closed observation from the first iteration of our algo-
rithm. Figure 2(a) demonstrates the DFA that corresponds to this observation
table, and Figure 2(b) demonstrates the Büchi automaton constructed form this
DFA. The first conjecture is not correct; the word ab(a)ω belongs to the target
language, but is not accepted by the automaton in Figure 2(b). Therefore, the
algorithm goes into a second iteration. The counterexample is translated into
one appropriate for the L* (ab$a), and all its suffixes are added to the top row of
the table. Table 1(b) is the closed table which we acquire after adding the coun-
terexample. Figure 3(a) shows the DFA corresponding to this table, and Figure
3(b) shows the Büchi automaton constructed based on this DFA. This Büchi
automaton passes the equivalence check and the algorithm is finished learning
the target language.

5 Optimizations

In this section, we briefly discuss some practical optimizations that we have
added to our implementation of the algorithm presented in Section 4 to gain a
more efficient learning tool.

Equivalence query as the last resort: The equivalence query for an ω-
regular language is expensive, even more than equivalence checking for regular
languages. The main reason is that it requires complementing the Büchi automa-
ton, which has a proven lower bound of 2O(n logn) [15]. Therefore, having fewer
equivalence queries speeds up the process of learning. For each conjecture DFA
A that is built during an iteration of the algorithm (more specifically, the incor-
rect conjectures), it does not have to be the case that L(A) is saturated by $. If

12

one could check for saturation and make $ saturate L(A) by adding/removing
words, one could avoid going through with an (expensive) equivalence check that
will most probably have a “NO” response. Unfortunately, there is no known way
of effectively checking for saturation. But all is not lost. One can construct an-
other DFA A′ where L(A′) = (Σ∗$Σ+) ∩ L(A). Let B and B′ be respectively

λ ab b $ab a$ab aba$ab ba$ab
λ − − − + − − +
a − − − − − + −
b − − − − − − −
$ − − + − − − −
ab − − − + + + +
$a − + − − − − −
$ab + + + − − − −
aa − − − − − − −
a$ − − − − − − −
ba − − − − − − −
bb − − − − − − −
b$ − − − − − − −
$b − − − − − − −
$$ − − − − − − −
aba − − − + + + +
abb − − − + + + +
ab$ − − + − − − −
$aa − − − − − − −
a − − − − − − −
$aba + + + − − − −
$abb + + + − − − −
ab − − − − − − −

λ ab b $ab a$ab aba$ab ba$ab a $a b$a ab$a
λ − − − + − − + − − − +
a − − − − − + − − − + −
b − − − − − − − − − − −
$ − − + − − − − − − − −
ab − − − + + + + − + + +
$a − + − − − − − − − − −
$ab + + + − − − − + − − −
ab$ − − + − − − − + − − −
aa − − − − − − − − − − −
a$ − − − − − − − − − − −
ba − − − − − − − − − − −
bb − − − − − − − − − − −
b$ − − − − − − − − − − −
$b − − − − − − − − − − −
$$ − − − − − − − − − − −
aba − − − + + + + − + + +
abb − − − + + + + − + + +
$aa − − − − − − − − − − −
a − − − − − − − − − − −
$aba + + + − − − − + − − −
$abb + + + − − − − + − − −
ab − − − − − − − − − − −
ab$a + + + − − − − + − − −
ab$b − − + − − − − + − − −
ab$$ − − − − − − − − − − −

(a) First Iteration. (b) Second Iteration.

Table 1. Observation Tables.

the corresponding Büchi automata for A and A′. If L(B)∩L(B′) 6= ∅ then there
is uvω ∈ L(B) ∩ L(B′), and we know that only a part of the equivalence class
[u$v]$ is in L(A) and the rest of it is in L(A′). To decide whether the class
should go into L(A) (the conjecture) completely, or be altogether removed from
it, we can pose a membership query for uvω to the teacher. If uvω ∈ L, then the
class should belong to the conjecture, and therefore any word in [u$v]$ ∩ L(A′)
works as a positive counterexample for the next iteration of L*. If uvω 6∈ L then
any word in [u$v]$ ∩ L(A) can serve as a negative counterexample for the next
iteration of the L*. This check is polynomial in the size of A, and saves us an
unnecessary equivalence query.

Minimization and Simplification: Our algorithm constructs and handles
many DFAs during the construction of the Büchi automaton from the conjecture
DFA (from Mq’s and Nq,qf

’s). Hence, the algorithm can benefit from minimizing
all those DFAs in order to reduce the overhead of working with them later on.
DFA minimization can be done very efficiently; the complexity is n log n [11],
where n is the size of the source DFA.

Learning Omega-Regular Languages 13

When the conjecture Büchi automaton is built, another useful technique
is to simplify the Büchi automaton by detecting a simulation relation between
states [18]. Intuitively, a state p simulates another state q in the Büchi automaton
if all accepting traces starting from q are also accepting traces starting from p.
If p simulates q and both transitions r a−→ p and r

a−→ q are in the automaton,
then r a−→ q can be safely removed without changing the language of the Büchi
automaton. Furthermore, if p and q simulate each other, then after redirecting
all of q’s incoming transitions to p, q can be safely removed. This technique is
useful for reducing the size of the result automaton, because the structures of
Mq and Nω

q,qf
are usually very similar, which provides good opportunities for

finding simulation relations.

6 Preliminary Experimental Results

We have implemented our algorithm using JAVA. DFA operations are delegated
to the dk.brics.automaton package, and the Büchi automaton equivalence check-
ing function is provided by the GOAL tool [19].

|Σ| = 2 |Σ| = 4
Avg Min Max Avg Min Max

Target BA recognizing L 5.3 5 7 5.34 5 10
Learned DFA 7.98 3 21 8.7 5 16
Learned BA 6.78 3 11 12.92 5 35
Learned BA (after simplification) 5.36 2 8 9.38 3 24

(Unit: number of states)

Table 2. Results for Randomly Generated Temporal Formulas.

We check the performance of our tool by learning randomly generated ω-
regular languages. More specifically, we combine the following 5 steps to get a
target Büchi automaton:

1. Randomly generate LTL formulas with a length of 6 and with 1 or 2 propo-
sitions (which produces respectively Büchi automata with |Σ| = 2 and 4).

2. If the formula appeared before, discard it and go back to step 1.
3. Use the LTL2BA [9] algorithm to make them Büchi automata.
4. Apply the simplification [18] to make the Büchi automata as small as possi-

ble.
5. If the size of the automaton is smaller than 5, discard it and go to step 1.

Note that the combination of these steps does not guarantee the minimality of
the resulting Büchi automaton.

Table 2 presents the performance of our algorithm on these randomly gener-
ated ω-regular languages. The sizes of the learned automata are compared with
the sizes of the target automata. The result shows that the size the learned au-
tomaton is comparable with the size of the target automaton. Table 2 presents
a summary of the results of 100 learning tasks. We have 50 are with |Σ|= 2 and
another half of them with |Σ| = 4.

14

Property Canonical Target Learned Responsive Target Learned ⊆ DB∩
Classes Formulas St Trans St Trans Formulas St Trans St Trans coDB?

Reactive FGp ∨GFq 5 26 7 37 GFp→ GFq 5 26 7 37 No
Persistence FGp 2 4 3 7 G(p→ FGq) 4 18 11 43 No
Recurrence GFp 2 12 3 9 G(p→ Fq) 3 12 13 65 No
Obligation Gp ∨ Fq 4 15 6 25 Fp→ Fq 4 15 6 25 Yes
Safety Gp 2 2 2 3 p→ Gq 3 9 9 32 Yes
Guarantee Fp 2 4 3 8 p→ Fq 3 12 4 20 Yes

Table 3. Effectiveness for learning automata from selected temporal formulas.

On a different note, we present the performance of our algorithm on learning
properties that are often used in verification. Table 3 presents the result of these
experiments. The target languages are described by temporal formulas selected
from Manna and Pnueli [14] and classified according to the hierarchy of temporal
properties which they proposed in the same paper. We translate those temporal
formulas to Büchi automata by the LTL2BA algorithm. The first column of
the table lists the six classes of the hierarchy. We select two temporal formulas
for each class2. One of them is a formula in “canonical form”3 and the other
is a formula in “responsive form”4. Maler and Pnueli’s algorithm [13] can only
handle the bottom three levels of that hierarchy. Their algorithm cannot handle
some important properties such as progress G(p → Fq) and strong fairness
GFp→ GFq, which can be handled by our algorithm.

7 Conclusions and Future Work

We extend the learning paradigm of the infinitary languages by presenting an
algorithm to learn an arbitrary ω-regular language L over an alphabet Σ. Our
main result is an algorithm to learn a nondeterministic Büchi automaton that
recognizes an unknown ω-regular language by learning a unique projection of it
(L$) on Σ∗ using the L*[2] algorithm. We also present preliminary experimental
results that suggest that algorithms performs well on small examples.

In the future, we would like to extend our experiments by learning bigger
Büchi automata. We would also like to use this learning algorithm as a core of
a compositional verification tool to equip the tool with the capability to check
liveness properties that have been missing from such tools so far. One way of
improving our algorithm is to find an effective way of checking for saturation,
which appears to be difficult and remains unsolved.

2 In this table, p and q are propositions. If one replaces p and q in a formula f with
temporal formulas containing only past operators, f still belongs to the same class.

3 The canonical formula is a simple representative formula for each class.
4 A responsive formula usually contains two propositions p and q. The proposition p

represents a stimulus and q is a response to p

Learning Omega-Regular Languages 15

References

1. R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by
learning assumptions. In Proceedings of the 17th International Conference on
Computer-Aided Verification (2005), LNCS 3576, pages 548–562. Springer, 2005.

2. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987.

3. A. Arnold. A syntactic congruence for rational omega-language. Theoretical Com-
puter Science, 39:333–335, 1985.

4. J.R. Büchi. On a decision method in restricted second-order arithmetic. In Pro-
ceedings of the 1960 International Congress on Logic, Methodology and Philosophy
of Science, pages 1–11. Standford University Press, 1962.

5. H. Calbrix, M. Nivat, and A. Podelski. Ultimately periodic words of rational ω-
languages. In Proceedings of the 9th International Conference on Mathematical
Foundations of Programming Semantics (1993), LNCS 802, pages 554–566, 1993.

6. H. Calbrix, M Nivat, and A Podelski. Sur les mots ultimement périodiques des
langages rationnels de mots infinis. Comptes Rendus de l’Académie des Sciences,
318:493–497, 1994.

7. S. Chaki, E. Clarke, N. Sinha, and P. Thati. Automated assume-guarantee reason-
ing for simulation conformance. In Proceedings of the 17th International Conference
on Computer-Aided Verification (2005), LNCS 3576, pages 534–547, 2005.

8. J.M. Cobleigh, D. Giannakopoulou, and C.S. Păsăreanu. Learning assumptions
for compositional verification. In Proceedings of the 9th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2003), LNCS 2619, pages 331–346, 2003.

9. P. Gastin and D. Oddoux. Fast LTL to Büchi automata translations. In Proceedings
of CAV (2001), LNCS 2102, pages 53–65. Springer, 2001.

10. A. Gupta, K.L. McMillan, and Z. Fu. Automated assumption generation for com-
positional verification. In Proceedings of the 19th International Conference on
Computer-Aided Verification (2005), LNCS 4590, pages 420–432, 2007.

11. J.E. Hopcroft. A n logn algorithm for minimizing states in a finite automaton.
Technical report, Stanford University, 1971.

12. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

13. O. Maler and A. Pnueli. On the learnability of infinitary regular sets. Information
and Computation, 118(2):316–326, 1995.

14. Z. Manna and A. Pnueli. A hierarchy of temporal properties. Technical Report
STAN-CS-87-1186, Stanford University, Department of Computer Science, 1987.

15. M. Michel. Complementation is more difficult with automata on infinite words. In
CNET, Paris, 1988.

16. D. Perrin and J.E. Pin. Infinite Words: Automata, Semigroups, Logic and Games.
Academic Press, 2003.

17. R.L. Rivest and R.E. Schapire. Inference of finite automata using homing se-
quences. Information and Computation, 103(2):299–347, 1993.

18. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In
Proceedings of CAV (2000), LNCS 1855, pages 248–263, 2000.

19. Y.-K Tsay, Y.-F Chen, M.-H Tsai, K.-N Wu, and W.-C Chan. GOAL: A graphical
tool for manipulating buchi automata and temporal formulae. In Proceedings of
TACAS (2007), LNCS 4424, pages 466–471.

20. D. L. Van, B. Le Saëc, and I. Litovsky. Characterizations of rational omega-
languages by means of right congruences. Theor. Comput. Sci., 143(1):1–21, 1995.

16

A Appendix

A.1 Proof of Theorem 4

We show that L (defined by (4)) is the ω-regular language for R. To do this, we
have to show that R = L$.

(L$ ⊆ R): By definition, each pair (Mq, Nq,qf
) satisfies the hypothesis of Lemma 1,

i.e. Mq = MqN
∗
q,qf

and N+
q,qf

= Nq,qf
. Therefore, if α ∈

⋃
(q,qf)∈Q$×F MqN

ω
q,qf

,
then there exist qf ∈ F , u ∈Mq, and v ∈ Nq,qf

such that α = uvω. Since u ∈Mq

and v ∈ Nq,qf
, we have u$v ∈ R. Since R is saturated by $, for all u′, v′ such

that α = u′v′ω, we have u′$v′ ∈ R. This argument holds for all α ∈ L, and thus
we have thus shown that L$ ⊆ R.

(R ⊆ L$): Let u$v be in R. We want to show that uvω ∈ L. For all integers k, k′,
the word uvk$vk

′
corresponds to the same ultimately periodic word as u$v, and

therefore u$v $ uvk$vk
′

. Since $ saturates R, we have uvk$vk
′ ∈ R.

We would like to show that there exist q ∈ Q$ and qf ∈ F and integers k and
k′ such that uvk ∈ Mq and vk

′ ∈ Nq,qf
, which will imply that uvk(vk

′
)ω = uvω

is in L.

{ {$
q$

u v

v v

v vvv
v

v

vv

v
pk

k

k

k′′

k′′

p′
k′′

Fig. 4. Proof Diagram.

For each j, we know that uvj$v ∈ R. Thus, we have δ(qi, uvj) = pj ∈ Q$ (for
some qi ∈ I). Since Q$ is finite, there are two integers m,n such that m ≥ 1 and
pn = pn+m, and for each integer k ≤ n + m, pk 6∈ {p0, . . . pk−1}. One can show
by simple induction that pk+m = pk for each integer k ≥ n.

Let r be the remainder of dividing n by m (n = lm+ r). Naturally, we have
r < m. Set k to be n+m−r = (l+1)m. This way, we have pk+k = pk+(l+1)m = pk,
since k > n. By definition pk = δ(qi, uvk), and therefore we have δ(pk, vk) = pk.
We set q = pk.

Learning Omega-Regular Languages 17

Using the same method, we can find an integer k′′ such that δ(q, $vkk
′′
) = p′k′′

and δ(p′k′′ , v
kk′′) = p′k′′ . We set k′ = kk′′ and qf = pk′′ . This implies that

vk
′ ∈ Nq,qf

. Therefore, uvk(vk
′
)ω = uvω is indeed in L. ut

A.2 Generate [u$v]$ from uvω

An alternative to the construction presented here can be found in [5].
The operations shift-in and reduce on a string s = u0u1 . . . un(v0v1 . . . vm)ω

are defined as follows. A shift-in operation is applicable to s if and only if un =
vm. Applying shift-in to s produces the string s′ = u0u1 . . . un−1(vmv1 . . . vm−1)ω.
Unfolding the ω-clauses of s and s′ produces exactly the same infinite string,
which implies s = s′. A reduce operation is applicable to s if and only if there
exists some integers p and q such that (v0v1 . . . vp)q = v0v1 . . . vm. Applying the
reduce operation on s results in the string s′ = u0u1 . . . un(v0v1 . . . vp)ω. Sim-
ilarly, by unfolding s and s′ we can find s = s′. shift-out and expand are the
reverse operations of shift-in and reduce.

uvω and u′v′ω are syntactically equivalent, which is written as uvω ≡ u′v′ω,
if and only if u = u′ and v = v′. uvω is in canonical form if and only if for all
u′v′ω = uvω, |u| ≤ |u′| and |v| ≤ |v′|. Pn(v) denotes the prefix of v with length
n.

Lemma 2. Given two strings v, v′ such that vω = v′ω and n = GCD(|v|, |v′|),
we have Pn(v)ω = vω, where GCD represents the greatest common divider.

Proof. Since n = GCD(|v|, |v′|), there are integers k,m such that |v| = mn,
|v′| = kn, and GCD(m, k) = 1. Therefore, we have v = u1 . . . um and v′ =
u′1 . . . u

′
k such that |ui| = |u′i| = n for all i. Since vω = v′ω, we know that all the

same-length prefixes of vω and v′ω are equivalent. This means that u1 = u′1.
We next show that for all i, u′i = u1. To do this, we show that for all i, there

is some prefix of vω of the form v̂u1 and a prefix of v′ω of the form v̂′u′i such
that |v̂| = |v̂′|. This and the fact that |u1| = |u′i| = n implies that u1 = u′i.

We know thatGCD(m, k) = 1 implies LCM(m, k) = mk. Consider the prefix
of vω and v′ω which has lengthmk−1. This prefix is of the form u1 . . . umu1 . . . um
. . . = u′1 . . . u

′
ku
′
1 . . . u

′
k Now, consider all positions at which u1 starts: 0,m, 2m,

. . . , (k − 1)m. It suffices that we show that u′i (for all i) also starts from one of
these positions. This means that for all i there is a j ∈ {0,m, 2m, . . . (k − 1)m}
such that the remainder of j = αk+i (for some α). Let us assume this is not true;
this means that there are two elements in that set that have the same remainder
divided by k (there are exactly k elements in the set). Let these two be am and
bm with am < bm. We can say then that (b−a)m is dividable by k and therefore
LCM(m, k) ≤ (b− a)k < mk. This is a contradiction since LCM(m, k) = mk.

We have thus shown that u′1 = u′2 = . . . = u′k = u1. Using a similar argument
we can show that u1 = u2 = . . . = um = u′1 = u1 = Pn(v). Therefore, vω =
v′ω = Pn(v)ω.

Lemma 3. An ultimately-periodic string uvω is not in canonical form if and
only if shift-in or reduce operation is applicable on uvω.

18

Proof. (⇐=) If shift or reduce operation is applicable to uvω, then we can obtain
a string u′v′ω with either a shorter prefix part or suffix part than uvω, by applying
the applicable operation to uvω. Hence uvω is not in canonical form.

(=⇒) If uvω is not in canonical form, then there exists u′ and v′ such that
u′v′ω = uvω and u′v′ω is in canonical form. By the definition of canonical form
then there are two possibilities: (1) (|u| = |u′|) and (|v| > |v′|) or (2) (|u| > |u′|).
In the case (1), we should have GCD(|v′|, |v|) = |v′|. Otherwise, by Lemma 2, the
string u′PGCD(|v|,|v′|)(v′)ω = u′v′ω contradicts the fact that u′v′ω is in canonical
form by being equivalent with a shorter presentation. HenceGCD(|v′|, |v|) = |v′|,
and therefore there exists some positive integer m > 1 satisfying v′m = v. The
reduce operation is then applicable to uvω. In case (2), applying |u|−|u′| shift-out
operations to u′v′ω produces a string uwω = uvω. |v′| = |w| ≤ |v| because shift
operations do not change the size of the suffix part. If GCD(|w|, |v|) < |w|, by
Lemma 2, we have PGCD(|w|,|v|)(w)ω = wω. Now, if we reverse the |u|−|u′| shift-
out operations by applying |u| − |u′| shift-in operations to uPGCD(|w|,|v|)(w)ω,
we get a string u′w′ω = u′v′ω, |w′| < |v′|, which contradicts that u′v′ω is in
canonical form. Therefore, GCD(|w|, |v|) = |w|, and there exists some positive
integer m ≥ 1 satisfying wm = v. When m > 1, reduce operation is applicable
to uvω. If m = 1, uvω ≡ uwω and shift-in operation is applicable to uwω. ut

By lemma 3 and since shift-in and reduce operations are only applicable for a
finite number of times (the lengths of the prefix and suffix are strictly decreasing
and bounded from below), continuously applying shift-in and reduce operations
on uvω until neither operation is applicable leads to the canonical form of uvω.
Reversely, applying shift-out and expand operations on the canonical form of
uvω by the inverted version of the process generates uvω.

Proposition 5. Any ultimately periodic string uvω can be obtained from it its
canonical form by finite applications of shift-out and expand operations.

Proof. Direct consequence of Lemma 3.

Theorem 5. Given a canonical string uvω ≡ u1u2 . . . un(v1v2 . . . vm)ω, the class
[u$v]$ and the regular expression

⋃
0≤i≤m upi(sipi)

∗$(sipi)+ represent the same
set of strings, where the pair (pi, si) is defined as follows:

(pi, si) =

 (v1 . . . vi, vi+1 . . . vm) if 1 ≤ i < m
(λ, v1 . . . vm) if i = 0
(v1 . . . vm, λ) if i = m.

Proof. By continuous applications of shift-out operations to uvω, we can obtain
the following set of strings:

{u1u2 . . . un(v1v2 . . . vm)ω,
u1u2 . . . unv1(v2v3 . . . v1)ω,

u1u2 . . . unv1v2(v3v4 . . . v2)ω · · · ,
u1u2 . . . unv1v2 . . . vm−1(vmv1 . . . vm−1)ω,

Learning Omega-Regular Languages 19

u1u2 . . . unv1v2 . . . vm(v1v2 . . . vm)ω,
u1u2 . . . unv1v2 . . . vmv1(v2v3 . . . v1)ω

· · ·
u1u2 . . . un(v1v2 . . . vm)2(v1v2 . . . vm)ω,

u1u2 . . . unv1(v2 . . . vmv1)2(v2v3 . . . v1)ω, · · ·}
=

u1u2 . . . un(v1v2 . . . vm)∗(v1v2 . . . vm)ω ∪
u1u2 . . . unv1(v2 . . . vmv1)∗(v2v3 . . . v1)ω ∪ · · · ∪

u1u2 . . . unv1v2 . . . vm−1(vmv1 . . . vm−1)∗(vmv1 . . . vm−1)ω

=
⋃

0≤i≤m

upi(sipi)∗(sipi)ω

Each word u′$v′ ∈ [u$v]$ corresponds to an ultimately periodic word u′v′ω =
uvω. By Proposition 5, we know that any word u′v′ω can be obtained from uvω

by finitely many shift-out and expand operations, and therefore it has to appear
somewhere in

⋃
0≤i≤m upi(sipi)

∗$(sipi)+.
Furthermore, if we try all possible expand operations after the shift-out op-

erations, We get the set
⋃

0≤i≤m upi(sipi)
∗((sipi)+)ω. For each word u′$v′ ∈⋃

0≤i≤m upi(sipi)
∗$(sipi)+, we have u′v′ω ∈

⋃
0≤i≤m upi(sipi)

∗((sipi)+)ω, and
therefore u′v′ω equals uvω. It follows that u′$v′ ∈ [u$v]$ ut

