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Abstract. We give a sound and complete fence insertion procedure for concur-
rent finite-state programs running under the classical TSO memory model. This
model allows “write to read” relaxation corresponding to the addition of an un-
bounded store buffer between each processor and the main memory. We introduce
a novel machine model, called the Single-Buffer (SB) semantics, and show that
the reachability problem for a program under TSO can be reduced to the reacha-
bility problem under SB. We present a simple and effective backward reachability
analysis algorithm for the latter, and propose a counter-example guided fence in-
sertion procedure. The procedure is augmented by a placement constraint that
allows the user to choose places inside the program where fences may be in-
serted. For a given placement constraint, we automatically infer all minimal sets
of fences that ensure correctness. We have implemented a prototype and run it
successfully on all standard benchmarks together with several challenging exam-
ples that are beyond the applicability of existing methods.

1 Introduction

Modern concurrent process architectures allow weak (relaxed) memory models, in
which certain memory operations may overtake each other. The use of weak memory
models makes reasoning about the behaviors of concurrent programs much more dif-
ficult and error-prone compared to the classical Sequentially Consistent (SC) memory
model. In fact, several algorithms that are designed for the synchronization of concur-
rent processes, such as mutual exclusion and producer-consumer protocols, are not cor-
rect when run on weak memories [2]. One way to eliminate the non-desired behaviors
resulting from the use of weak memory models is to insert memory fence instructions
in the program code. A fence instruction forbids reordering between instructions and
does not allow any operation issued after the fence instruction to overtake an operation
issued before it. Hence, a naive approach to correct a program running under a weak
memory model is to insert a fence instruction after every operation. Adopting this ap-
proach results in significant performance degradation [13] as we get back to the SC
model. Therefore, it is important to optimize fence placement. A natural criterion is to
provide minimal sets of fences whose insertion is sufficient for ensuring program cor-
rectness under the considered weak memory model (provided correctness under SC).

One of the most common relaxations corresponds to TSO (Total Store Ordering)
that is adopted by Sun’s SPARC multiprocessors. TSO is the kernel of many common



weak memory models [28, 31], and is the latest formalization of the x86 memory model.
In TSO, read operations are allowed to overtake write operations of the same process
if they concern different variables. In this paper, we use the usual formal model of
TSO, developed in e.g. [28, 30], and assume it gives a faithful description of the actual
hardware on which we run our programs. This model adds an unbounded FIFO buffer
between each process and the main memory.

Our approach We present a sound and complete method for checking safety proper-
ties and for inserting fences in finite-state programs running on the TSO model. The
procedure is parameterized by a fence placement constraint that allows to restrict the
places inside the program where fences may be inserted. To cope with the unbounded
store buffers in the case of TSO, we present a new semantics, called the Single-Buffer
(SB) semantics, in which all the processes share one (unbounded) buffer. We show that
the SB semantics is equivalent to the operational model of TSO (as defined in [30]).
A crucial feature of the SB semantics is that it permits a natural ordering on the (infi-
nite) set of configurations, and that the induced transition relation is monotonic wrt. this
ordering. This allows to use general frameworks for well quasi-ordered systems [1] in
order to derive verification algorithms for programs running on the SB model. In case
the program fails to satisfy the specification with the current set of fences, our algorithm
provides counter-examples (traces) that can be used to increase the set of fences in a
systematic manner. Thus, we get a counter-example guided procedure for refining the
sets of fences. This procedure is guaranteed to terminate. Since each refinement step is
performed based on an exact reachability analysis algorithm, the procedure will even-
tually return all minimal sets of fences (wrt. the given placement constraint) that ensure
correctness of the program. Although we instantiate our framework to the case of TSO,
the method can be extended to other memory models such as the PSO model.

Contribution We present the first sound and complete procedure for fence insertion
for programs under TSO. The main ingredients of the framework are the following:
(i) A new semantical model, the so called SB model, that allows efficient infinite state
model checking. (ii) A simple and effective backward analysis algorithm for solving
the reachability problem under the SB semantics. (iii) The algorithm uses finite-state
automata as a symbolic representation for infinite sets of configurations, and returns a
symbolic counter-example in case the program violates its specification. (iv) A counter-
example guided procedure that automatically infers all minimal sets of fences sufficient
for correctness under a given fence placement policy. (v) Based on the algorithm, we
have implemented a prototype, and run it successfully on several challenging concurrent
programs, including some that cannot be handled by existing methods.

Proofs, implementation details and experimental results are in the appendix.

Related Work To our knowledge, our approach is the first sound and complete auto-
matic fence insertion method that discovers all minimal sets of fences for finite-state
concurrent programs running under TSO. Since we are dealing with infinite-state ver-
ification, it is hard to provide methods that are both automatic and that return ex-
act solutions. Existing approaches avoid solving the general problem by considering
under-approximations, over-approximations, restricted classes of programs, forbidding



sequential inconsistent behavior, or by proposing exact algorithms for which termina-
tion is not guaranteed. Under-approximations of the program behavior can be achieved
through testing [9], bounded model checking [7, 6], or by restricting the behavior of the
program, e.g., through bounding the sizes of the buffers [18] or the number of switches
[5]. Such techniques are useful in practice for finding errors. However, they are not able
to check all possible traces and can therefore not tell whether the generated set of fences
is sufficient for correctness. Recent techniques based on over-approximations [19] are
valuable for showing correctness; however they are not complete and might not be able
to prove correctness although the program satisfies its specification. Hence, the com-
puted set of fences need not be minimal. Examples of restricted classes of programs
include those that are free from different types of data races [27]. Considering only
data-race free programs can be unrealistic since data races are very common in efficient
implementations of concurrent algorithms. Another approach is to use monitors [3, 8,
10], compiler techniques [12], and explicit state model checking [16] to insert fences
in order to remove all non-sequential consistent behaviors even if these will not vio-
late the desired correctness properties. As a result, this approach can not guarantee to
generate minimal sets of fences to make programs correct because they also remove be-
nign sequentially inconsistent behaviors. The method of [23] performs an exact search
of the state space, combined with fixpoint acceleration techniques, to deal with the
potentially infinite state space. However, in general, the approach does not guarantee
termination. State reachability for TSO is shown to be non primitive recursive in [4] by
reductions to/from lossy channel systems. The reductions involve nondeterministically
guessing buffer contents, which introduces a serious state space explosion problem.
The approach does not discuss fence insertion and can not even verify the simplest ex-
amples. An important contribution of our work is the introduction of a single buffer
semantics for avoiding the immediate state space explosion. In contrast to the above
approaches, our method is efficient and performs exact analysis of the program on the
given memory model. Termination of the analysis is guaranteed. As a consequence, we
are able to compute all minimal sets of fences required for correctness of the program.

2 Preliminaries

In this section we first introduce notations that we use through the paper, and then define
a model for concurrent systems.

Notation We use N to denote the set of natural numbers. For sets A and B, we use
[A 7→ B] to denote the set of all total functions from A to B and f : A 7→ B to denote that
f is a total function that maps A to B. For a ∈ A and b ∈ B, we use f [a←↩ b] to denote
the function f ′ defined as follows: f ′(a) = b and f ′(a′) = f (a′) for all a′ 6= a.

Let Σ be a finite alphabet. We denote by Σ∗ (resp. Σ+) the set of all words (resp.
non-empty words) over Σ, and by ε the empty word. The length of a word w ∈ Σ∗ is
denoted by |w|; we assume that |ε|= 0. For every i : 1≤ i≤ |w|, let w(i) be the symbol
at position i in w. For a ∈ Σ, we write a ∈ w if a appears in w, i.e., a = w(i) for some
i : 1 ≤ i≤ |w|. For words w1,w2, we use w1 ·w2 to denote the concatenation of w1 and
w2. For a word w 6= ε and i : 0≤ i≤ |w|, we define w� i to be the suffix of w we get by
deleting the prefix of length i, i.e., the unique w2 such that w = w1 ·w2 and |w1|= i.



A transition system T is a triple (C,Init,−→) where C is a (potentially infinite) set
of configurations, Init ⊆ C is the set of initial configurations, and −→ ⊆ C× C is the
transition relation. We write c−→c′ to denote that (c,c′) ∈ −→, and ∗−→ to denote the
reflexive transitive closure of −→. A configuration c is said to be reachable if c0

∗−→c
for some c0 ∈ Init; and a set C of configurations is said to be reachable if some c ∈C
is reachable. A run π of T is of the form c0−→c1−→·· ·−→cn, where ci−→ci+1 for all
i : 0≤ i < n. Then, we write c0

π−→cn. We use target (π) to denote the configuration cn.
Notice that, for configurations c,c′, we have that c ∗−→c′ iff c π−→c′ for some run π. The
run π is said to be a computation if c0 ∈ Init. Two runs π1 = c0−→c1−→·· ·−→cm and
π2 = cm+1−→cm+2−→·· ·−→cn are said to be compatible if cm = cm+1. Then, we write
π1 •π2 to denote the run π1 = c0−→c1−→·· ·−→cm−→cm+2−→·· ·−→cn. Given an ordering
v on C, we say that−→ is monotonic wrt.v if whenever c1−→c′1 and c1 v c2, there exists
a c′2 s.t. c2

∗−→c′2 and c′1 v c′2. We say that −→ is effectively monotonic wrt. v if, given
configurations c1,c′1,c2 as above, we can compute c′2 and a run π s.t. c2

π−→c′2.

Concurrent Programs We define concurrent programs, a model for representing
shared-memory concurrent processes. A concurrent program P has a finite number of
finite-state processes (threads), each with its own program code. Communication be-
tween processes is performed through a shared-memory that consists of a fixed number
of shared variables (finite domains) to which all threads can read and write.

We assume a finite set X of variables ranging over a finite data domain V . A concur-
rent program is a pair P=(P,A) where P is a finite set of processes and A= {Ap| p ∈ P}
is a set of extended finite-state automata (one automaton Ap for each process p ∈ P).
The automaton Ap is a triple

(
Qp,qinit

p ,∆p
)

where Qp is a finite set of local states,
qinit

p ∈ Qp is the initial local state, and ∆p is a finite set of transitions. Each transi-
tion is a triple (q,op,q′) where q,q′ ∈ Qp and op is an operation. An operation is of
one of the following five forms: (1) “no operation” nop, (2) read operation r(x,v), (3)
write operation w(x,v), (4) fence operation fence, and (5) atomic read-write operation
arw(x,v,v′), where x∈ X , and v,v′ ∈V . For a transition t = (q,op,q′), we use source(t),
operation(t), and target (t) to denote q, op, and q′ respectively. We define Q :=∪p∈PQp
and ∆ := ∪p∈P∆p. A local state definition q is a mapping P 7→ Q such that q(p) ∈ Qp
for each p ∈ P.

3 TSO Semantics

We describe the TSO model formalized in [28, 30]. Conceptually, the model adds a
FIFO buffer between each process and the main memory. The buffer is used to store
the write operations performed by the process. Thus, a process executing a write in-
struction inserts it into its store buffer and immediately continues executing subsequent
instructions. Memory updates are then performed by non-deterministically choosing a
process and by executing the first write operation in its buffer (the left-most element in
the buffer). A read operation by a process p on a variable x can overtake some write
operations stored in its own buffer if all these operations concern variables that are dif-
ferent from x. Thus, if the buffer contains some write operations to x, then the read value
must correspond to the value of the most recent such a write operation. Otherwise, the



value is fetched from the memory. A fence means that the buffer of the process must be
flushed before the program can continue beyond the fence. Notice that the store buffers
of the processes are unbounded since there is a priori no limit on the number of write
operations that can be issued by a process before a memory update occurs. Below we
define the transition system induced by a program running under the TSO semantics. To
do that, we define the set of configurations and transition relation. We fix a concurrent
program P = (P,A).

Formal Semantics A TSO-configuration c is a triple
(
q,b,mem

)
where q is a local state

definition, b : P 7→ (X×V )∗, and mem : X 7→ V . Intuitively, q(p) gives the local state
of process p. The value of b(p) is the content of the buffer belonging to p. This buffer
contains a sequence of write operations, where each write operation is defined by a pair,
namely a variable x and a value v that is assigned to x. In our model, messages will be
appended to the buffer from the right, and fetched from the left. Finally, mem defines the
state of the memory (defines the value of each variable in the memory). We use CTSO to
denote the set of TSO-configurations. We define the transition relation −→TSO on CTSO.
The relation is induced by (1) members of ∆; and (2) a set ∆′ :=

{
updatep| p ∈ P

}
where updatep is an operation that updates the memory using the first message in the
buffer of process p. For configurations c =

(
q,b,mem

)
, c′ =

(
q′,b′,mem′

)
, a process

p ∈ P, and t ∈ ∆p∪
{
updatep

}
, we write c t−→TSO c′ to denote that one of the following

conditions is satisfied:

– Nop: t = (q,nop,q′), q(p) = q, q′ = q [p←↩ q′], b′ = b, and mem′ = mem. The pro-
cess changes its local state while buffer and memory contents remain unchanged.

– Write to store: t = (q,w(x,v),q′), q(p) = q, q′ = q [p←↩ q′], b′ =
b [p←↩ b(p) · (x,v)], and mem′ = mem. The write operation is appended to
the tail of the buffer.

– Update: t = updatep, q′ = q, b = b′
[
p←↩ (x,v) ·b′(p)

]
, and mem′ = mem [x←↩ v].

The write in the head of the buffer is removed and memory is updated accordingly.
– Read: t = (q, r(x,v),q′), q(p) = q, q′ = q [p←↩ q′], b′ = b, mem′ = mem, and one

of the following two conditions is satisfied:
• Read own write: There is an i : 1 ≤ i ≤ |b(p)| such that b(p)(i) = (x,v), and

(x,v′) 6∈ (b(p)� i) for all v′ ∈V . If there is a write operation on x in the buffer
of p then we consider the most recent of such a write operation (the right-most
one in the buffer). This operation should assign v to x.

• Read memory: (x,v′) 6∈ b(p) for all v′ ∈V and mem(x) = v. If there is no write
operation on x in the buffer of p then the value v of x is fetched from memory.

– Fence: t = (q, fence,q′), q(p) = q, q′ = q [p←↩ q′], b(p) = ε, b′ = b, and mem′ =
mem. A fence operation may be performed by a process only if its buffer is empty.

– ARW: t = (q,arw(x,v,v′),q′), q(p) = q, q′ = q [p←↩ q′], b(p) = ε, b′ = b, mem(x) =
v, and mem′ = mem [x←↩ v′]. The ARW operation is performed atomically. It can be
performed by a process only if its buffer is empty. The operation checks whether
the value of x is v. In such a case, it changes its value to v′.

We use c−→TSO c′ to denote that c t−→TSO c′ for some t ∈∆∪∆′. The set InitTSO of initial
TSO-configurations contains all configurations of the form

(
qinit,binit,meminit

)
where,



for all p ∈ P, we have that qinit(p) = qinit
p and binit(p) = ε. In other words, each process

is in its initial local state and all the buffers are empty. On the other hand, the memory
may have any initial value. The transition system induced by a concurrent system under
the TSO semantics is then given by (CTSO,InitTSO,−→TSO).

The TSO Reachability Problem Given a set Target of local state definitions, we use
Reachable(TSO)(P)(Target) to be a predicate that indicates the reachability of the set{(

q,b,mem
)
| q ∈ Target

}
, i.e., whether a configuration c, where the local state defini-

tion of c belongs to Target, is reachable. The reachability problem for TSO is to check,
for a given Target, whether Reachable(TSO)(P)(Target) holds or not. Using stan-
dard techniques we can reduce checking safety properties to the reachability problem.
More precisely, Target denotes “bad configurations” that we do not want to occur dur-
ing the execution of the system. For instance, for mutual exclusion protocols, the bad
configurations are those where the local states of two processes are both in the critical
sections. We say that the “program is correct” to indicate that Target is not reachable.

4 Single-Buffer Semantics

The formal model of TSO [28, 30] is quite powerful since it uses unbounded perfect
buffers. However, the reachability problem remains decidable [4]. Our goal is to exploit
this to design a practically efficient verification algorithm. To do that, we introduce a
new semantics model, called the Single-Buffer (SB) model that weaves the buffers of all
processes into one unified buffer.The SB model satisfies two important properties (1)
it is equivalent to the TSO semantics wrt. reachability, i.e., Target is reachable in the
TSO semantics iff it is reachable in the SB semantics; (2) the induced transition system
is “monotonic” wrt. some pre-order (on configurations) so that the classical infinite state
model checking framework of [1] can be applied. Fix a concurrent system P = (P,A).

Formal Semantics A SB-configuration c is a triple
(
q,b,z

)
where q is (as in the case

of TSO-semantics) a local state definition, b ∈ ([X 7→V ]×P×X)+, and z : P 7→ N. In-
tuitively, the (only) buffer contains triples of the form (mem, p,x) where mem defines
variable values (encoding a memory snapshot), x is the latest variable that has been
written into, and p is the process that performed the write operation. Furthermore, z
represents a set of pointers (one per process) where, from the point of view of p, the
word b� z(p) is the sequence of write operations that have not yet been used for mem-
ory updates and the first element of the triple b(z(p)) represents the memory content. As
we shall see below, the buffer will never be empty, since it is not empty in an initial con-
figuration, and since no messages are ever removed from it during a run of the system
(in the SB semantics, the update operation moves a pointer to the right instead of re-
moving a message from the buffer). This implies (among other things) that the invariant
z(p)> 0 is always maintained. We use CSB to denote the set of SB-configurations.

Let c =
(
q,b,z

)
be an SB-configuration. For every p ∈ P and x ∈ X , we use

LastWrite(c, p,x) to denote the index of the most recent buffer message where p
writes to x or the current memory of p if the aforementioned type of message does
not exist in the buffer from the point of view of p. Formally, LastWrite(c, p,x) is the
largest index i such that i = z(p) or b(i) = (mem, p,x) for some mem.



We define the transition relation −→SB on the set of SB-configurations as follows. In
a similar manner to the case of TSO, the relation is induced by members of ∆∪∆′. For
configurations c =

(
q,b,z

)
, c′ =

(
q′,b′,z′

)
, and t ∈ ∆p∪

{
updatep

}
, we write c t−→SB c′

to denote that one of the following conditions is satisfied:

– Nop: t = (q,nop,q′), q(p) = q, q′ = q [p←↩ q′], b′ = b and z′ = z. The operation
changes only the local state of p.

– Write to store: t = (q,w(x,v),q′), q(p) = q, q′ = q [p←↩ q′], b(|b|) is of the form
(mem1, p1,x1), b′ = b ·(mem1 [x←↩ v] , p,x), and z′ = z. A new element is appended
to the tail of the buffer. Values of variables in the new element are identical to
those in the previous last element except that the value of x has been updated to v.
Furthermore, we include the updating process p and the updated variable x.

– Update: t = updatep, q′ = q, b′ = b, z(p)< |b| and z′ = z [p←↩ z(p)+1]. An update
operation (as seen by p) is simulated by moving the pointer of p one step to the
right. This means that we remove the oldest write operation that is yet to be used for
a memory update. The removed element will now represent the memory contents
from the point of view of p.

– Read: t = (q, r(x,v),q′), q(p) = q, q′ = q [p←↩ q′], b′ = b, and
b(LastWrite(c, p,x)) = (mem1, p1,x1) for some mem1, p1,x1 with mem1(x) = v.

– Fence: t = (q, fence,q′), q(p) = q, q′ = q [p←↩ q′], z(p) = |b|, b′ = b, and z′ = z.
The buffer should be empty from the point of view of p when the transition is
performed. This is encoded by the equality z(p) = |b|.

– ARW: t = (q,arw(x,v,v′),q′), q(p) = q, q′ = q [p←↩ q′], z(p) = |b|, b(|b|) is of
the form (mem1, p1,x1), mem1(x) = v, b′ = b · (mem1 [x←↩ v′] , p,x), and z′ =
z [p←↩ z(p)+1]. The fact that the buffer is empty from the point of view of p is
encoded by the equality z(p) = |b|. The content of the memory can then be fetched
from the right-most element b(|b|) in the buffer. To encode that the buffer is still
empty after the operation (from the point of view of p) the pointer of p is moved
one step to the right.

We use c−→SB c′ to denote that c t−→SB c′ for some t ∈ ∆∪∆′. The set InitSB of ini-
tial SB-configurations contains all configurations of the form

(
qinit,binit,zinit

)
where

|binit| = 1, and for all p ∈ P, we have that qinit(p) = qinit
p , and zinit(p) = 1. In other

words, each process is in its initial local state. The buffer contains a single message, say
of the form (meminit, pinit,xinit), where meminit represents the initial value of the mem-
ory. The memory may have any initial value. Also, the values of pinit and xinit are not
relevant since they will not be used in the computations of the system. The pointers of
all the processes point to the first position in the buffer. According to our encoding, this
indicates that their buffers are all empty. The transition system induced by a concurrent
system under the SB semantics is then given by (CSB,InitSB,−→SB).

The SB Reachability Problem We define the predicate Reachable(SB)(P)(Target),
and the reachability problem for the SB semantics, in a similar manner to TSO. The
following theorem states equivalence of the reachability problems under TSO and SB
semantics. Due to its technicality and lack of space, we leave the proof for the appendix.

Theorem 1. For a concurrent program P and a local state definition Target, the
reachability problems are equivalent under the TSO and SB semantics.



5 The SB Reachability Algorithm

In this section, we present an algorithm for checking reachability of an (infinite) set
of configurations characterized by a (finite) set Target of local state definitions. In
addition to answering the reachability question, the algorithm also provides an “error
trace” in case Target is reachable. First, we define an ordering v on the set of SB-
configurations, and show that it satisfies two important properties, namely (i) it is a well
quasi-ordering (wqo), i.e., for every infinite sequence c0,c1, . . . of SB-configurations,
there are i < j with ci v c j; and (ii) the SB-transition relation −→SB is monotonic wrt.
v. The algorithm performs backward reachability analysis from the set of configura-
tions with local state definitions that belong to Target. During each step of the search
procedure, the algorithm takes the upward closure (wrt. v) of the generated set of con-
figurations. By monotonicity of v it follows that taking the upward closure preserves
exactness of the analysis. From the fact that we always work with upward closed sets
and that v is a wqo it follows that the algorithm is guaranteed to terminate. In the
algorithm, we use a variant of finite-state automata, called SB-automata, to encode (po-
tentially infinite) sets of SB-configurations.

Ordering For an SB-configuration c =
(
q,b,z

)
we define ActiveIndex(c) :=

min{z(p)| p ∈ P}. In other words, the part of b to the right of (and including)
ActiveIndex(c) is “active”, while the part to the left is “dead” in the sense that all
its content has already been used for memory updates. The left part is therefore not
relevant for computations starting from c.

Let c =
(
q,b,z

)
and c′ =

(
q′,b′,z′

)
be two SB-configurations. Define j :=

ActiveIndex(c) and j′ := ActiveIndex(c′). We write cv c′ to denote that (i) q = q′

and that (ii) there is an injection g : { j, j+1, . . . , |b|} 7→ { j′, j′+1, . . . , |b′|} such that
the following conditions are satisfied. For every i, i1, i2 ∈ { j, . . . , |b|}, (1) i1 < i2 implies
g(i1)< g(i2), (2) b(i) = b′(g(i)), (3) LastWrite(c′, p,x) = g(LastWrite(c, p,x)) for
all p ∈ P and x ∈ X , and (4) z′(p) = g(z(p)) for all p ∈ P. The first condition means
that g is strictly monotonic. The second condition corresponds to that the active part of
b is a sub-word of the active part of b′. The third condition ensures the last write indices
wrt. all processes and variables are consistent. The last condition ensures each process
points to identical elements in b and b′.

We get the following lemma from the fact that (i) the sub-word relation is a well-
quasi ordering on finite words [15], and that (ii) the number of states and messages
(associated with last write operations and pointers) that should be equal, is finite.

Lemma 1. The relation v is a well-quasi ordering on SB-configurations.

The following lemma shows effective monotonicity of the SB-transition relation
wrt. v. As we shall see below, this allows the reachability algorithm to only work with
upward closed sets. Monotonicity is used in the termination of the reachability algo-
rithm. The effectiveness aspect is used in the fence insertion algorithm (cf. Section 6).

Lemma 2. −→SB is effectively monotonic wrt. v.

Recall that the term effective monotonicity is defined in Section 2. The upward closure
of a set C is defined as C↑:= {c′ |∃c ∈C, cv c′}. A set C is upward closed if C =C↑.



SB-Automata First we introduce an alphabet Σ := ([X 7→V ]×P×X)× 2P. Each
element ((mem, p,x) ,P′) ∈ Σ represents a single position in the buffer of an SB-
configuration. More precisely, the triple (mem, p,x) represents the message stored at
that position and the set P′ ⊆ P gives the (possibly empty) set of processes whose point-
ers point to the given position. Consider a word w = a1a2 · · ·an ∈ Σ∗, where ai is of the
form ((memi, pi,xi) ,Pi). We say that w is proper if, for each process p ∈ P, there is ex-
actly one i : 1≤ i≤ n with p∈ Pi. In other words, the pointer of each process is uniquely
mapped to one position in w. A proper word w of the above form can be “decoded” into
a (unique) pair decoding(w) := (b,z), defined by (i) |b| = n, (ii) b(i) = (memi, pi,xi)
for all i : 1≤ i≤ n, and (iii) z(p) is the unique integer i : 1≤ i≤ n such that p ∈ Pi (the
value of i is well-defined since w is proper). We extend the function to sets of words
where decoding(W ) := {decoding(w)| w ∈W}.

An SB-automaton A is a tuple
(
S,∆,Sfinal,h

)
where S is a finite set of states,

∆ ⊆ S× Σ× S is a finite set of transitions, Sfinal ⊆ S is the set of final states, and
h : (P 7→ Q) 7→ S. The total function h defines a labeling of the states of A by the local
state definitions of the concurrent program P, such that each q is mapped to a state h(q)
in A. For a state s∈ S, we define L(A,s) to be the set of words of the form w= a1a2 · · ·an
such that there are states s0,s1, . . . ,sn ∈ S satisfying the following conditions: (i) s0 = s,
(ii) (si,ai+1,si+1) ∈ ∆ for all i : 0≤ i < n, (iii) sn ∈ Sfinal, and (iv) w is proper. We define
the language of A by L(A) :=

{(
q,b,z

)
| (b,z) ∈ decoding

(
L
(
A,h(q)

))}
. Thus, the lan-

guage L(A) characterizes a set of SB-configurations. More precisely, the configuration(
q,b,z

)
belongs to L(A) if (b,z) is the decoding of a word that is accepted by A when

A is started from the state h(q) (the state labeled by q). A set C of SB-configurations is
said to be regular if C = L(A) for some SB-automaton A.

Operations on SB-Automata We show that we can compute the operations (union, in-
tersection, test emptiness, compute predecessor, etc.) needed for the reachability algo-
rithm. First, observe that regular sets of SB-configurations are closed under union and
intersection. For SB-automata A1,A2, we use A1 ∩A2 to denote an automaton A such
that L(A) = L(A1)∩L(A2). We define A1∪A2 in a similar manner. We use A /0 to denote
an (arbitrary) automaton whose language is empty. We can construct SB-automata for
the set of initial SB-configurations, and for sets of SB-configurations characterized by
local state definitions.

Lemma 3. We can compute an SB-automaton Ainit such that L
(
Ainit

)
= InitSB. For a

set Target of local state definitions, we can compute an SB-automaton Afinal (Target)
such that L

(
Afinal (Target)

)
:=
{(

q,b,z
)
| q ∈ Target

}
.

The following lemma tells us that regularity of a set is preserved by taking upward
closure, and that we in fact can compute an automaton describing its upward closure.

Lemma 4. For an SB-automaton A we can compute an SB-automaton A↑ such that
L(A↑) = L(A)↑.

We define the predecessor function as follows. Let t ∈ ∆∪∆′ and let C be a set
of SB-configurations. We define Pret (C) := {c |∃c′ ∈ C,c t−→SB c′} to denote the set
of immediate predecessor configurations of C w.r.t. the transition t. In other words,



Pret (C) is the set of configurations that can reach a configuration in C through a single
execution of t. The following lemma shows that Pre preserves regularity, and that in
fact we can compute the automaton of the predecessor set.

Lemma 5. For a transition t and an SB-automaton A, we can compute an SB-
automaton Pret (A) such that L(Pret (A)) = Pret (L(A)).

Algorithm 1: Reachability
input : A concurrent program P and a finite

set Target of local state definitions.
output: “unreachable” if

¬Reachable(SB)(P)(Target) holds.
A trace to Target otherwise.

1 W ←
{

Afinal (Target)
}

;
2 AV ← A /0;
3 while W 6= /0 do
4 Pick and remove a trace δ from W ;
5 A← head (δ);
6 if L

(
A∩Ainit) 6= /0 then return δ;

7 if L(A)⊆ L
(

AV
)

then discard A;

8 else
9 W ←

{
δ′ ∈W | L(head (δ′)) 6⊆ L(A)

}
∪

{(Pret (A))↑ ·t ·δ| t ∈ ∆};
10 AV ← AV ∪A
11 return “unreachable”;

Reachability Algorithm The algo-
rithm performs a symbolic backward
reachability analysis, where we use
SB-automata for representing infi-
nite sets of SB-configurations. In
fact, the algorithm also provides
traces that we will use to find places
inside the code where to insert
fences (see Section 6). For a set
Target of local state definitions,
a trace δ to Target is a se-
quence of the form A0t1A1t2 · · · tnAn
where A0,A1, . . . ,An are SB-
automata, t1, . . . , tn are transitions,
and (i) L(A0) ∩ InitSB 6= /0;
(ii) Ai = (Pret (Ai+1)) ↑ for all
i : 0 ≤ i < n (even if L(Ai+1) is
upward-closed, it is still possible
that L(Pret (Ai+1)) is not upward-
closed; however due to monotonicity taking upward closure does not affect exactness
of the analysis); and (iii) An = Afinal (Target). In the following, we use head (δ) to
denote the SB-automaton A0. The algorithm inputs a finite set Target, and checks the
predicate Reachable(SB)(P)(Target). If the predicate does not hold then Algorithm
1 simply answers unreachable; otherwise, it returns a trace. It maintains a working
set W that contains a set of traces. Intuitively, in a trace A0t1A1t2 · · · tnAn ∈W , the
automaton A0 has been “detected” but not yet “analyzed”, while the rest of the trace
represents a sequence of transitions and SB-automata that has led to the generation of
A0. The algorithm also maintains an automaton AV that encodes configurations that
have already been analyzed.

Initially, AV is an automaton recognizing the empty language, and W is the sin-
gleton

{
Afinal (Target)

}
. In other words, we start with a single trace containing the

automaton representing configurations induced by Target (can be constructed by
Lemma 3). At the beginning of each iteration, the algorithm picks and removes a trace
δ (with head A) from the set W . First it checks whether A intersects with Ainit (can be
constructed by Lemma 3). If yes, it returns the trace δ. If not, it checks whether A is
covered by AV (i.e., L(A)⊆ L

(
AV
)

). If yes then A does not carry any new information
and it (together with its trace) can be safely discarded. Otherwise, the algorithm per-
forms the following operations: (i) it discards all elements of W that are covered by A;
(ii) it adds A to AV ; and (iii) for each transition t it adds a trace A1 · t ·δ to W , where we



compute A1 by taking the predecessor Pret (A) of A wrt. t, and then taking the upward
closure (Lemmata 4 and 5). Notice that since we take the upward closure of the gener-
ated automata, and since Afinal (Target) accepts an upward closed set, then AV and all
the automata added to W accept upward closed sets. The algorithm terminates when
W becomes empty.

Theorem 2. The reachability algorithm always terminates with the correct answer.

6 Fence Insertion

Our fence insertion algorithm is parameterized by a predefined placement constraint
G where G ⊆ Q. The algorithm will place fences only after local states that belong to
G. This gives the user the freedom to choose between the efficiency of the verifica-
tion algorithm and the number of fences that are needed to ensure correctness of the
program. The weakest placement constraint is defined by taking G to be the set of all
local states of the processes, which means that a fence might be placed anywhere in-
side the program. On the other hand, one might want to place fences only after write
operations, place them only before read operations,or avoid putting them within certain
loops (e.g., loops that are known to be executed often during the runs of the program).
For any given G, the algorithm finds the minimal sets of fences (if any) that are suffi-
cient for correctness. First, we show how to use a trace δ to derive a counter-example:
an SB-computation that reaches Target. From the counter example, we explain how
to derive a set of fences in G such that the insertion of at least one element of the set
is necessary in order to eliminate the counter-example. Finally, we introduce the fence
insertion algorithm.

Fences We identify fences with local states. For a concurrent program P = (P,A) and
a fence f ∈ Q, we use P⊕ f to denote the concurrent program we get by inserting a
fence operation just after the local state f in P. Formally, if f ∈ Qp, for some p ∈ P,

then P⊕ f :=
(

P,
{

A′p′ | p′ ∈ P
})

where A′p′ = Ap′ if p 6= p′. Furthermore, if Ap =(
Qp,qinit

p ,∆p
)
, then we define A′p =

(
Qp∪{q′} ,qinit

p ,∆′p
)

with q′ 6∈ Qp, and ∆′p = ∆p∪
{( f , fence,q′)}∪{(q′,op,q′′)| ( f ,op,q′′) ∈ ∆p}\{( f ,op,q′′)| ( f ,op,q′′) ∈ ∆p}. We say
F is minimal wrt. a set Target of local state definitions and a placement constraint
G if F ⊆ G and Reachable(SB)(P⊕F \{ f})(Target) holds for all f ∈ F but not
Reachable(SB)(P⊕F)(Target). We use FG

min (P)(Target) to denote the set of mini-
mal sets of fences in P wrt. Target that respect the placement constraint G.

Counter-Example Generation Consider a trace δ = A0t1A1t2 · · · tnAn. We show
how to derive a counter-example from δ. Formally, a counter-example is a run
c0

t1−→SB c1
t2−→SB · · · tm−−→SB cm of the transition system induced from P under the SB

semantics, where c0 ∈ InitSB and cm ∈
{(

q,b,z
)
| q ∈ Target

}
. We assume a func-

tion choose that, for each automaton A, chooses a member of L(A) (if L(A) 6= /0),
i.e., choose(A) = w for some arbitrary but fixed w ∈ L(A). We will define π using
a sequence of configurations c0, . . . ,cn where ci ∈ L(Ai) for i : 0 ≤ i ≤ n. Define



c0 := choose
(
A0∩Ainit

)
. The first configuration c0 in π is a member of the intersec-

tion of A0 and Ainit (this intersection is not empty by the definition of a trace). Sup-
pose that we have computed ci for some i : 0 ≤ i < n. Since Ai = Preti+1 (Ai+1)↑
and ci ∈ L(Ai), there exist c′i ∈ Preti+1 (Ai+1) ⊆ L(Ai) and di+1 ∈ L(Ai+1) such that

c′i v ci and c′i
ti+1−−−→SB di+1. Since there are only finitely many configurations that are

smaller than ci wrt. v, we can indeed compute both c′i and di+1. By Lemma 2, we
know we can compute a configuration ci+1 and a run πi+1 such that di+1 v ci+1 and
ci

πi+1−−−→SB ci+1. Since L(Ai+1↑) is upward closed, we know that ci+1 ∈ L(Ai+1↑). We
define π := c0 •π1 • c1 •π2 • · · · •πn • cn. We use CounterEx(δ) to denote such a π.

Fence Inference We will identify points along a counter-example π =

c0
t1−→SB c1

t2−→SB · · ·
tn−1−−−→SB cn−1

tn−→SB cn at which read operations overtake
write operations and derive a set of fences such that any one of them forbids such
an overtaking. We do this in several steps. Let ci be of the form

(
q

i
,bi,zi

)
. Define

ni := |bi|. First, we define a sequence of functions α0, . . . ,αn where αi associates to
each message in the buffer bi the position in π of the write transition that gave rise to
the message. Below we explain how to generate those α functions. The first message
bi(1) in each buffer represents the initial state of memory. It has not been generated
by any write transition, and therefore αi(1) is undefined. Since b0 contains exactly
one message, α0( j) is undefined for all j. If ti+1 is not a write transition then define
αi+1 := αi (no new message is appended to the buffer, so all transitions associated to
all messages have been defined). Otherwise, we define αi+1( j) := αi( j) if 2 ≤ j ≤ ni
and define αi+1(ni +1) := i+1. In other words, a new message will be appended to the
end of the buffer (placed at position ni+1 = ni + 1); and to this message we associate
i+1 (the position in π of the write transition that generated the message).

Next, we identify the write transitions that have been overtaken by read op-
erations. Concretely, we define a function Overtaken such that, for each i : 1 ≤
i ≤ n, if ti is a read transition then the value Overtaken(π)(i) gives the positions
of the write transitions in π that have been overtaken by the read operation. For-
mally, if ti is not a read transition define Overtaken(π)(i) := /0. Otherwise, as-
sume that ti = (q, r(x,v),q′) ∈ ∆p for some p ∈ P. We have Overtaken(π)(i) :={

αi( j)| LastWrite(ci, p,x)< j ≤ ni∧ tαi( j) ∈ ∆p
}

. In other words, we consider the
process p that has performed the transition ti and the variable x whose value is read
by p in ti. We search for pending write operations issued by p on variables different
from x. These are given by transitions that (i) belong to p and (ii) are associated with
messages inside the buffer that belong to p and that are yet to be used for updating the
memory (they are in the postfix of the buffer to the right of LastWrite(ci, p,x)).

Finally, we notice that, for each i : 1≤ i≤ n and each j ∈ Overtaken(π)(i), the pair
( j, i) represents the position j of a write operation and the position i of a read operation
that overtakes the write operation. Therefore, it is necessary to insert a fence at least
in one position between such a pair in order to ensure that we eliminate at least one of
the overtakings that occur along π. Furthermore, we are only interested in local states
that belong to the placement constraint G. To reflect this, we define Barrier(G)(π) :={

q
k
(p)| ∃i : 1≤ i≤ n. ∃ j ∈ Overtaken(π)(i). j ≤ k < i

}
∩G.



Algorithm 2: Fence Inference
input : concurrent program P, placement

constraint G, local state definitions
Target.

output: FG
min (P)(Target).

1 W ←{ /0};
2 C ← /0;
3 while W 6= /0 do
4 Pick and remove a set F from W ;
5 if Reachable(SB)(P⊕F)(Target) = δ then
6 FB← Barrier(G)(CounterEx(δ));
7 if FB = /0 then
8 return /0

9 else foreach f ∈ FB do
10 F ′← F ∪{ f};
11 if ∃F ′′ ∈ C ∪W . F ′′ ⊆ F ′ then
12 discard F ′

13 else W ←W ∪{F ′}
14 else
15 C ← C ∪{F}
16 return C ;

Algorithm Our fence insertion al-
gorithm (Algorithm 2) inputs a con-
current program P, a placement con-
straint G, and a finite set Target

of local state definitions, and re-
turns all minimal sets of fences
(FG

min (P)(Target)). If this set is
empty then we conclude that the
program cannot be made correct by
placing fences in G. In this case, and
if G = Q (or indeed, if G includes
sources of all read operations or des-
tinations of all write operations), the
program is not correct even under
SC-semantics (hence no set of fences
can make it correct).

Theorem 3. For a concurrent pro-
gram P, a placement constraint
G, and a finite set Target, Al-
gorithm 2 terminates and returns
FG

min (P)(Target).
Remark 1. If only a smallest minimal set is of interest, then it is sufficient to implement
W as a queue and to return the first added element to C .

7 Experimental Results

We have evaluated our approach on several benchmark examples including some diffi-
cult problem sets that cannot be handled by any previous approaches. We have imple-
mented Algorithm 2 in OCaml and run the experiments using a laptop computer with an
Intel Core i3 2.26 GHz CPU and 4GB of memory. Table 1 summarizes our results. The
placement constraint only allows fences immediately after write operations. The exper-
iments were run in two modes: one until the first minimal set of fences is found, and
one where all minimal sets of fences are found. For each concurrent program we give
the program size (number of processes, number of states, variables and transitions), the
total required time in seconds, the number of inserted fences in the smallest minimal
fence set and the number of minimal fence sets.

Our implementation is able to verify all above examples. This is beyond the capa-
bilities of previous approaches. In particular, none of our examples is data-race free.
Furthermore, some of our examples may generate an arbitrary number of messages in-
side the buffers and they may have sequential inconsistent behaviors. To the best of our
knowledge, only the approaches in [19] and in [22] are potentially able to handle such
general classes of problems. However, the approach of [22] does not guarantee termina-
tion. The work in [19] abstracts away the order between buffer messages, and hence it
cannot handle examples where the order of messages sent to the buffer is crucial (such
as the “Increasing Sequence” example in the table). See the appendix for further details.



Size Total time Total time Fences Number of
Proc./States/Var./Trans seconds seconds necessary minimal

(one fence set) (all fence sets) (smallest set) fence sets
1. Simple Dekker [31] 2/8/2/10 0.02 0.02 1 per process 1
2. Full Dekker [11] 2/14/3/18 0.28 0.28 1 per process 1
3. Peterson [29] 2/10/3/14 0.24 0.6 1 per process 1
4. Lamport Bakery [20] 2/22/4/32 52 5538 2 per process 4
5. Lamport Fast [21] 2/26/4/38 6.5 6.5 2 per process 1
6. CLH Queue Lock[25] 2/48/4/60 26 26 0 1
7. Sense Reversing Barrier [26] 2/16/2/24 1.1 1.1 0 1
8. Burns [24] 2/9/2/11 0.07 0.07 1 per process 1
9. Dijkstra [24] 2/14/3/24 9.5 10 1 per process 1
10. Tournament Barriers [14] 2/8/2/8 1.2 1.2 0 1
11. A Task Scheduling Algorithm 3/7/2/9 60 60 0 1
12. Increasing Sequence 2/26/1/44 25 27 0 1
13. Alternating Bit 2/8/2/12 0.2 0.2 0 1
14. Producer Consumer, v1, N=2 18/3/22 0.2 0.2 Erroneous 0
15. Producer Consumer, v1, N=3 22/4/28 4.5 4.5 Erroneous 0
16. Producer Consumer, v2, N=2 14/3/18 5.7 5.7 0 1
17. Producer Consumer, v2, N=3 16/4/22 580 583 0 1

Table 1. Analyzed concurrent programs

8 Conclusion

We have presented a sound and complete method for automatic fence insertion in finite-
state programs running under the TSO memory model, based on a new (so called)
SB-semantics. We have automatically verified several challenging examples, includ-
ing some that cannot be handled by existing approaches. The design of the new SB
semantics is not a trivial task. For instance, ”obvious” variants such as simply mak-
ing the buffer in TSO ”lossy”, or removing the pointers or storing less information
inside the messages of the SB-buffer would fail, since they yield either over- or under-
approximations (even wrt. reachability properties). Also the ordering we define on SB
configurations cannot be ”translated back” to an ordering on TSO configuration (this
would make it possible to apply our method directly on TSO rather than on the SB
semantics). The reason is that standard proofs that show reductions between differ-
ent semantics (models), where each configuration in one model is shown to be in (bi-
)simulation with a configuration in the other model cannot be used here. Given an SB-
configuration, it is not obvious how to define an ”equivalent” TSO configuration, and
vice versa. However (crucially, as shown in the proof of Theorem 1) we show that each
computation in one semantics violating/satisfying a given safety property is simulated
by a (whole) computation that violates/satisfies the same safety property in the other.
Our method can be carried over to other memory models such as PSO in a straightfor-
ward manner. In the future, we plan to apply our techniques to more memory models
and to combine with predicate abstraction to enable handling programs with unbounded
data.
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A Examples

We present in the following the examples we used for testing our approach. Unless oth-
erwise specified, all examples are correct under SC semantics and the initial values of
variables are set to 0. All of the examples are not data-race free. Typically, we have
applied our approach on systems with two processes. For a variable v, we write v[i] to
mean a (possibly shared) variable associated with process i. Local variables are prefixed
with an underscore. In our experiments, we used targets of write operations as a place-
ment constraint. We make explicit in the code the fences automatically introduced by
our tool. Here, we consider correctness properties such as mutual exclusion for locks
and mutex algorithms, and synchronization for barrier algorithms.

Dekker algorithm: We experimented with two versions of the classical Dekker algo-
rithm for mutual exclusion. First (see Figure 1) the simplified version (mentioned in
the manual of the SPARC architecture [31]) uses one boolean f lag per process i. Each
process uses f lag to notify the other process of its interest in accessing the critical sec-
tion. A process only accesses the critical section if the other one is not interested. Our
analysis finds derives a fence after the write at line 2 and proves the resulting program
respects mutual exclusion under TSO.

/ / P r o c e s s [ i : {0 , 1} ]
1 whi le t r u e
2 s t o r e f l a g [ i ] = 1 ;
3 fence ;
4 l o a d f l a g = f l a g [1− i ] ;

5 i f f l a g =1
6 s t o r e f l a g [ i ] = 0 ;
7 goto 2 ;
8 / / CS ;
9 s t o r e f l a g [ i ] = 0 ;

Fig. 1. A simple version of the Dekker’s algorithm for ensuring mutual exclusion among two
processes.

The second version (see Figure 2) is starvation free. This is achieved with the addi-
tion of a variable turn (initially set to 0 or 1) that gives alternatively the priority to each
of the two processes. Again, our analysis correctly inserts one fence per process after
the write at line 2, and proves the resulting program correct under TSO.

The algorithm can be equivalently implemented by replacing the goto at line 11 by
a store flag[i]=1 and a fence. This alternative implementation requires two fences
per process, but there will be no difference in the number of times a fence is actually
executed in order to access the critical section.

Peterson algorithm: This algorithm makes use of a boolean f lag per process in addi-
tion to a turn variable (initially set to 0 or 1) to ensure mutual exclusion (see Figure 3).
The f lag is used to notify the other process of the interest in accessing the critical sec-
tion. Each process systematically gives priority to the other process by setting the turn
variable. In case of a tie, the last process to set the variable turn loses. Our analysis cor-
rectly inserts a fence after the write at line 3 and proves the resulting program respects
mutual exclusion under TSO.



/ / P r o c e s s [ i : {0 , 1} ] :
1 whi le t r u e
2 s t o r e f l a g [ i ] = 1 ;
3 fence ;
4 l o a d f l a g = f l a g [1− i ] ;
5 whi le f l a g ==1
6 l o a d t u r n = t u r n ;
7 i f t u r n != i
8 s t o r e f l a g [ i ] = 0 ;

9 whi le t u r n != i
10 l o a d t u r n = t u r n ;
11 goto 2 ;
12 l o a d f l a g = f l a g [1− i ] ;
13 / / CS
14 s t o r e t u r n =1− i ;
15 f l a g [ i ] = 0 ;

Fig. 2. Dekker’s algorithm without deadlock for mutual exclusion with two processes.

/ / P r o c e s s [ i : {0 , 1} ] :
1 whi le t r u e
2 s t o r e f l a g [ i ] = 1 ;
3 s t o r e t u r n = 1− i ;
4 fence ;
5 do

6 l o a d f l a g = f l a g [1− i ] ;
7 l o a d t u r n = t u r n ;
8 whi le f l a g =1 & t u r n =1− i ;
9 / / CS ;

10 s t o r e f l a g [ i ] = 0 ;

Fig. 3. Peterson’s algorithm for mutual exclusion with two processes

Lamport’s Bakery algorithm: In this mutual exclusion algorithm, each process that
wants to access the critical section needs to choose a number that is strictly larger than
the numbers of all other processes (see Figure 4). The process with the smallest number
is allowed to enter the critical section. In case of a tie, the algorithm uses the identifiers
to define priorities. In addition, a boolean variable c per process is used to notify other
processes of whether the concerned process is choosing its number. Without making
the test on c at lines 13-15, a process p might access its critical section based on the
old value of the other process q, when in fact q is about to choose the same value as p
for its number. This would violate mutual exclusion if the slower process q has higher
priority when it reaches line 17. We bounded possible values for the number variables
by 2, and checked whether mutual exclusion is respected under TSO. Our approach
automatically infers four minimal sets of fences, and proves the resulting programs
respect mutual exclusion under TSO. These sets correspond to placing two fences per
process, one at line 3 and the other at either line 10 or line 12.

Fast Lamport: The algorithm focuses on having a constant number of reads and writes
when there is no contention, as opposed to other parameterized algorithms that require
a linear amount of memory accesses. The processes share an array of N variable and
two variables x and y. Our analysis derives two fences (per process) after the writes at
lines 3 and 11, and proves the resulting program safe with respect to mutual exclusion
under TSO.

Burns algorithm: This mutual exclusion algorithm assumes the (arbitrarily many, here
two) processes to be ordered according to their identifiers (see Figure 6). It uses one
boolean f lag per process. Each process performs three global reads to check that the
flags associated to the other processes are 0 in order to access its critical section. More



/ / P r o c e s s [ i : {0 , 1} ] :
1 whi le t r u e
2 s t o r e c [ i ] = 1 ;
3 fence ;
4 l o a d n [1− i ] = n[1− i ] ;
5 i f n [1− i ]==2
6 s t o r e c [ i ]=0
7 goto 2 ;
8 n [ i ]=1+ n [1− i ] ;
9 s t o r e n [ i ]= n [ i ] ;

10 fence ; / / A l t e r n a t i v e 1
11 s t o r e c [ i ] = 0 ;
12 fence ; / / A l t e r n a t i v e 2

13 do
14 l o a d c = c[1− i ] ;
15 whi le c != 0 ;
16 do
17 l o a d n [1− i ]= n[1− i ] ;
18 whi le n [1− i ] ! = 0
19 & ( n [1− i ] < n [ i ]
20 | ( n [1− i ] == n [ i ]
21 & i < 1− i ) ) ;
22 / / CS ;
23 s t o r e n [ i ] = 0 ;

Fig. 4. Lamport’s Bakery algorithm for mutual exclusion. We analyzed an instance with two
processes.

/ / P r o c e s s [ i : {1 , 2} ] :
1 whi le t r u e
2 s t o r e b [ i ] = 1 ;
3 s t o r e x = i ;
4 fence ;
5 l o a d y = y ;
6 i f y != 0
7 s t o r e b [ i ] = 0 ;
8 whi le y !=0
9 l o a d y = y ;

10 goto 1 ;
11 s t o r e y= i ;
12 fence ;

13 l o a d x = x ;
14 i f x != i
15 s t o r e b [ i ]=0
16 do
17 l o a d b = b[3− i ] ;
18 whi le b != 0
19 l o a d y = y ;
20 i f y != i
21 whi le y !=0
22 l o a d y =y ;
23 goto 1 ;
24 / / CS ;
25 s t o r e y =0;
26 s o t r e b [ i ] = 0 ;

Fig. 5. Lamport’s Fast algorithm. We analyzed an instance with two processes.

precisely, a process performs two global reads to the right, and one to the left. If the
process sees that another process to the right has a f lag equal to one, it gives up by
restarting and setting its flag to 0. It however does not give up if it sees a process to the
right with f lag equals one and waits for it instead. As a result, the code is different for
process 0 and process 1 as the first process does not have any process to the left, while
the second does not have any process to the right (see Figure 6). Our analysis infers two
fences (one per process) after the writes at line 2 for process one and line 6 for process
2. The analysis proves mutual exclusion for the resulting program under TSO.

Dijkstra algorithm: The algorithm uses one f lag with values in {0,1,2} per process,
and one global variable turn with values in the set of identifiers of the arbitrary many
processes union the singleton {0} (here there are two processes with id 1 and 2, so turn
has the domain {0,1,2}, see Figure 7). A process uses the turn variable to gain access



/ / p r o c e s s [ 0 ] :
1 whi le t r u e
2 s t o r e f l a g [ 0 ] = 1 ;
3 fence ;
4 l o a d f l a g = f l a g [ 1 ] ;
5 i f f l a g ==1
6 goto 4 ;
7 / / CS
8 s t o r e f l a g [ 0 ] = 0 ;

/ / p r o c e s s [ 1 ] :
1 whi le t r u e

2 s t o r e f l a g [ 1 ] = 0 ;
3 l o a d f l a g = f l a g [ 0 ] ;
4 i f f l a g ==1
5 goto 2 ;
6 s t o r e f l a g [ 1 ] = 1 ;
7 fence ;
8 l o a d f l a g = f l a g [ 0 ] ;
9 i f f l a g ==1

10 goto 2 ;
11 / / CS
12 s t o r e f l a g [ 1 ] = 0 ;

Fig. 6. Burns mutual exclusion algorithm instantiated for two processes

to the critical section by setting the variable to its id each time the process with turn as
id has released the critical section (by resetting turn to 0). Among those that succeeded
in setting turn to their id, a simple Dekker is used to ensure that exactly one of them
accesses the critical section. Our analysis infers one fence per process after the write at
line 9, and proves mutual exclusion is respected by the resulting program on TSO.

/ / p r o c e s s [ i : {1 , 2} ] :
1 whi le t r u e
2 s t o r e f l a g [ i ] = 1 ; ,
3 l o a d t u r n = t u r n ;
4 whi le t u r n != i
5 l o a d f l a g = f l a g [ t u r n ] ;
6 i f f l a g = 0
7 s t o r e t u r n = i ;

8 l o a d t u r n = t u r n
9 s t o r e f l a g [ i ] = 2 ;

10 fence ;
11 l o a d f l a g = f l a g [3− i ] ;
12 i f f l a g = 2
13 goto 2 ;
14 / / CS ;
15 s t o r e f l a g [ i ] = 0 ;

Fig. 7. Dijkstra mutual exclusion algorithm instantiated for two processes.

CLH queue lock: Our model of the CLH queue-based locking algorithm is presented
in Figure 8. We consider in our model two processes competing for the lock and using
a memory modeled as a shared array mem with three boolean cells. In addition, the
processes share the variable lock used as an index of mem. Each process owns two
local variables i and p that take their values in {0, ..., |mem|−1}. Initially both local
variables i and p of each process are equal but different from the local variables of the
other process.

A process that wants to grab the lock starts by setting mem[ i] to 1 (line 2). Then,
the process puts itself in the queue and points to the boolean flag held by the previous
process in the queue using an atomic operation involving flushing its write buffer and
swapping the values of lock and p. We simulate this operation using lines 3-5. Observe
that the resulting code may block as lock may change from line 3 to line 4; this however
only adds blocking behaviors which preserves exactness of the reachability analysis.



/ / a p r o c e s s :
1 whi le t r u e
2 s t o r e mem[ i ] = 1 ;
3 l o a d l o c k = l o c k ;
4 arw ( lock , l o c k , p ) ;
5 p = l o c k ;

6 do
7 l o a d mp=mem[ p ]
8 whi le mp != 0 ;
9 / / CS ;

10 s t o r e mem[ i ] = 0 ;
11 i = p ;

Fig. 8. CLH Queue Locking algorithm. We analyzed an instance with two processes sharing a
memory array of three cells and an index lock.

The process waits then for its turn at line 8, and releases the lock by resetting its flag to
0. Our analysis showed there was no need to introduce fences in order for the algorithm
to ensure mutual exclusion under TSO.

Sense reversing tournament barrier: This algorithm ensures barrier synchronization for
N processes in phases of log2(N) rounds. The algorithm proceeds in two phases: arrival
and wakeup, each represented by a loop involving log2(N) rounds where processes, at
each round, are statically divided into winners and losers. In the arrival phase, losers
notify winners they are waiting for them, and winners qualify to the next round where
half of them become losers. The unique winner at the last round is declared champion.
In the wakeup phase, the champion wakes up its loser, and at each round, each winner
wakes up the corresponding loser. For two processes, the algorithm boils down to the
one presented in Figure 9.

/ / p r o c e s s [ 0 ] : champion
1 whi le t r u e
2 / / epoch i
3 do
4 l o a d f l a g = f l a g [ 0 ] ;
5 whi le f l a g != s e n s e ;
6 s t o r e f l a g [ 1 ] = s e n s e ;
7 s e n s e = ! s e n s e ;
8 / / epoch i +1

/ / p r o c e s s [ 1 ] : l o s e r
1 whi le t r u e
2 / / epoch i
3 s t o r e f l a g [ 0 ] = s e n s e ;
4 do
5 l o a d f l a g = f l a g [ 1 ] ;
6 whi le f l a g != s e n s e
7 s e n s e = ! s e n s e ;
8 / / epoch i +1

Fig. 9. Sense reversing tournament barrier instantiated for two processes.

We applied our analysis and showed correctness (here that no process crosses the
barrier if the other is still in the previous epoch) without the need to insert fences on
TSO.

Centralized sense-reversing barrier This barrier algorithm boils down to Figure 10 for
two processes. In the general case, it synchronizes N processes using a global counter
cnt and a shared boolean sense. The counter cnt is initially set to 2, the number of
processes in the system. Each process that encounters the barrier atomically fetches and
decreases the value of cnt. We simulate this operation with the possibly blocking lines



4-5 (see swap operation in the CLH algorithm above). Thereafter, the process waits for
the value of sense to change. The last process that decreased cnt sets back the value of
cnt to 2 and releases all other processes by changing the value of sense. We applied our
analysis to the system and verified its correctness (that no process crosses the barrier
when the other is still in the previous epoch) without the need to insert fences under
TSO.

/ / a p r o c e s s :
1 whi le t r u e
2 / / epoch i
3 l o a d s e n s = s e n s ;
4 l o a d c n t = c n t ;
5 arw ( cn t , c n t , c n t −1) ;
6 i f c n t == 1

7 s t o r e c n t = 2 ;
8 s t o r e s e n s = n o t s e n s ;
9 e l s e

10 do
11 l o a d r e l = s e n s ;
12 whi le r e l = s e n s ;
13 / / epoch i +1

Fig. 10. A centralized sens reversing barrier instantiated for two processes.

A Task Scheduling Algorithm. Figure 11 is a task scheduling algorithm. The client
repeatedly executes two tasks in order and the arbiter checks if there exists sufficient
resources to execute the tasks. The arbiter grants permission by copying the allowed
task number from variable req to variable turn. We add an assertion in line 11 and
verify it to ensure that in the next iteration, the client will not execute the task before
the arbiter checks the resources. Our analysis proves the assertion is respected under
TSO without the need for fence insertion.

/ / a r b i t e r :
1 whi le t r u e
2 l o a d r e q = r e q ;
3 / / check r e s o u r c e
4 s t o r e t u r n = r e q ;

/ / c l i e n t [ i : {0 , 1} ]
1 whi le t r u e
2 do

3 s t o r e r e q = i ∗2 ;
4 l o a d t u r n = t u r n ;
5 whi le t u r n 6= i ∗2 ;
6 do
7 s t o r e r e q = i ∗2+1;
8 l o a d t u r n = t u r n ;
9 whi le t u r n 6= i ∗2+1;

10 l o a d t u r n = t u r n ;
11 a s s e r t t u r n 6= i ∗2 ;

Fig. 11. A Task Scheduling algorithm. We analyzed an instance with two clients.

Overwriting Producer Consumer Figure 12 shows a producer-consumer algorithm. The
processes share an N element array, arena. The producer process continually stores
resources to the shared array (by setting the values of array elements to 1), which are
then consumed by the consumer process (by setting the values back to 0) in a cyclic
manner. The producer is allowed to overtake the consumer, thereby replacing some



existing resources with new ones. The consumer may not overtake the producer and
consume non-existing resources. Therefore the consumer needs to keep track of the
position of the producer through a shared variable head.

Our prototype analyzed the producer-consumer algorithm and found that it is erro-
neous even under sequential consistency and hence cannot be corrected only by inser-
tion of fences. This was detected during the analysis of the first counter-example gener-
ated by the reachability analysis. The counter-example did not contain any instruction
reorderings and thus respected sequential consistency.

/ / p r o d u c e r :
1 hd = 0 ;
2 whi le t r u e
3 s t o r e a r e n a [ hd ] = 1 ;
4 hd = ( hd +1)%N;
5 s t o r e head = hd ;

/ / consumer :
1 t l = 0 ;
2 whi le t r u e
3 l o a d hd = head ;
4 i f hd != t l
5 l o a d a = a r e n a [ t l ] ;
6 a s s e r t ( a == 1) ;
7 s t o r e a r e n a [ t l ] = 0 ;
8 t l = ( t l +1)%N;

Fig. 12. An Overwriting Producer-Consumer algorithm with one producer and one consumer.
(Version 1)

Figure 13 shows a similar producer-consumer algorithm, where the producer creates
two resources at a time, which are consumed one at a time by the consumer. In this case,
the assert on line 6 cannot be violated, which is verified by our prototype. No fences
are necessary for the correctness of this program under TSO.

/ / p r o d u c e r :
1 hd = 0 ;
2 whi le t r u e
3 s t o r e a r e n a [ hd ] = 2 ;
4 hd = ( hd +1)%N;
5 s t o r e head = hd ;

/ / consumer :
1 t l = 0 ;
2 whi le t r u e
3 l o a d hd = head ;
4 i f hd != t l
5 l o a d a = a r e n a [ t l ] ;
6 a s s e r t ( a != 0 ) ;
7 arw ( a r e n a [ t l ] , a , a −1) ;
8 t l = ( t l +1)%N;

Fig. 13. An Overwriting Producer-Consumer algorithm with one producer and one consumer.
(Version 2)

Alternating algorithm The algorithm in Figure 14 can be used to transmit values from
one process to the other using shared variables (here msg and ack) in case these can
be overwritten by other processes using other values than those used by the algorithm.



Essentially, the algorithm simulates a version of the alternating bit protocol where over-
written shared variables play the role of unreliable channels. We want to check that a
process can not start writing the next message or acknowledgment before the other pro-
cess managed to read it; for example, the sender can not move from lines 2-5 to lines
6-9 without the receiver having moved from lines 2-5 to lines 6-9. For this, our analysis
deduces that there is no need to introduce fences under TSO.

/ / s e n d e r :
1 whi le t r u e
2 do
3 s t o r e msg =0;
4 l o a d a =ack ;
5 whi le a != 0 ;
6 do
7 s t o r e msg =1;
8 l o a d a =ack ;
9 whi le a !=1

/ / r e c e i v e r :
1 whi le t r u e
2 do
3 s t o r e ack =1;
4 l o a d m=msg ;
5 whi le m != 0 ;
6 do
7 s t o r e ack =0;
8 l o a d m=msg ;
9 whi le m!=1

Fig. 14. Alternating bit protocol with two variables used for synchronization.

Increasing Sequence The algorithm in Figure 15 is a small but challenging example
to many existing approaches. The server process may generate an arbitrary number of
messages to the buffer. The client reads the value of msg twice and check if the value
of the second read is not smaller than the first read. The order of messages sent to the
buffer is important for proving the assertion at line 7; the value read in line 6 cannot be
smaller than the one read in line 5. If an approach (e.g., [19]) abstracts away the order
between buffer messages, then it cannot verify this example. Moreover, this example
is not triangular data-race free. It allows the following sequential consistent execution;
lines 5,6,1,2, and then line 3, which contains a triangular data-race. So it cannot be
handled by approaches with data-race free assumptions. Our analysis concludes that
the system is correct under TSO without any fence.

/ / S e r v e r P r o c e s s
1 f o r ( i = 1 t o 20)
2 whi le ( ∗ )
3 s t o r e msg= i ;

/ / C l i e n t P r o c e s s
4 s t o r e msg = 0 ;
5 l o a d v a l 1 =msg ;
6 l o a d v a l 2 =msg ;
7 a s s e r t ( v a l 1≤ v a l 2 ) ;

Fig. 15. Increasing Sequence.



B Implementation Details

The algorithms described in this paper were implemented as a prototype using OCaml.
A number of optimizations were implemented to enhance the performance of the algo-
rithm. Below, we describe the most important ones (in no particular order):

– Placement constraint: Algorithm 2 describes our algorithm for fence insertion,
where the allowed positions for fences are restricted by a placement constraint.
The constraint we used in our experiments is that fences may only be placed im-
mediately after writes. This corresponds to a fence method of the x86 architecture
where writes are replaced by LOCK’d writes [17, 30] which forces a write buffer
flush after LOCK’d writes are executed.

– Augmented alphabet: We let SB-automata operate over an augmented alphabet.
The augmented alphabet is the same as that of the SB-buffer, except that individual
values in the memory snapshot may be left undefined, with the interpretation that
any value is possible for that variable. This allows us to avoid having to enumer-
ate all possible values for a variable and proceed instead in a lazy manner when
performing the backward reachability analysis.

– Symmetry reduction: Many of the concurrent algorithms and protocols analyzed in
our experiments consist of symmetrical processes. The reachability analysis was
adapted to exploit this by only searching one of the multiple symmetrical paths
through the transition system.

– Partial order reduction: To reduce the number of equivalent paths in the transition
system that are searched, we consider the timing of updates from store buffers to
main memory. In the TSO semantics, an update may occur at any time. However, it
is enough for the reachability analysis to only schedule an update (i) immediately
after the write that generated the buffer message, or (ii) immediately after some
later read by the same process. The reason is that scheduling the update at other
locations does not change the behavior of the process that issued the buffer message
(as it does not read variables in those locations); nor does it change the behavior of
the other processes (as the updates will anyway take place after the write or after
some read of the issuing process).

– Combination with a rough forward analysis: To reduce the amount of searching
performed in the backward reachability analysis when adding messages to the sin-
gle buffer, our tool first performs a rough forward reachability analysis. The invari-
ants inferred by the forward analysis will then be used in the backward analysis
to rule out some of the superfluous transitions. In the forward reachability analy-
sis we use an over-approximative abstraction of TSO where the write buffers are
represented as unordered sets of messages rather than as FIFO channels.

C Reachability Equivalence: SB–TSO

In this section, we show equivalence of the reachability problems under the TSO and
SB semantics. Assume a concurrent program P = (P,A).

We show the following theorem (which immediately implies the result.)



Theorem 1. Reachable(SB)(P)(Target) iff Reachable(TSO)(P)(Target) for all lo-
cal state definitions Target.

For a TSO-configuration c =
(
q,b,mem

)
, we use StatesOf(c), BuffersOf(c),

and MemoryOf(c) to denote q, b, and mem respectively. For an SB-configuration c =(
q,b,z

)
, we use StatesOf(c), BufferOf(c), and PointersOf(c) to denote q, b, and

z respectively.

From SB to TSO We show only-if direction of Theorem 1. Consider an SB-computation
πSB = c0

t1−→SB c1
t2−→SB · · ·

tn−1−−−→SB cn−1
tn−→SB cn. We will derive a TSO-computation

πTSO such that StatesOf(target (πTSO)) = StatesOf(cn).
First, we show that we can assume that πSB is of a particular form defined

as follows. An SB-configuration c is said to be balanced if PointersOf(c)(p) =
PointersOf(c)(p′) for all p, p′ ∈ P. In other words, the pointers of the processes are
all at the same position inside the buffer (i.e., the processes have all a consistent view
of the memory). An SB-computation π is said to be balanced if its last configuration
target (π) is balanced. We can assume without loss of generality, that πSB is balanced.
The reason is that, in case πSB is not balanced, we can continue from cn and perform
a sequence of update operations, until all the pointers point to the same position in the
buffer. Notice that the configuration c′n reached in this manner has the same local state
definition as cn.

Define r := |BufferOf(cn) |. For a process p ∈ P and an SB-message a =
(mem, p′,x), we define SBtoTSO(p)(a) to be the pair (x,mem(x)) if p′ = p and ε oth-
erwise. For a word w = a1a2 · · ·an over SB-messages, we define SBtoTSO(p)(w) :=
SBtoTSO(p)(a1) · SBtoTSO(p)(a2) · · · · · SBtoTSO(p)(an), i.e., we concatenate the
results of applying the operation individually on each ai.

Let ≺ be an arbitrary total order on the set p of processes. We use pmin and pmax to
be the smallest resp. largest elements of ≺. For p 6= pmax, we define succ(p) to be the
successor of p wrt. ≺, i.e., p ≺ succ(p) and there is no p′ with p ≺ p′ ≺ succ(p). We
define prev(p) for p 6= pmin analogously.

The computation πTSO consists of r phases (henceforth referred to as the phase
1,2, . . . ,r). At phase k, the computation πTSO simulates the movements of the processes
when their pointers are at position k in the buffer. The order in which the processes are
simulated during phase k is defined by the ordering ≺. First, process pmin will perform
a sequence of transitions. This sequence is identical to the sequence of transitions it
performs in πSB when its pointer is equal to k. Then, the next process performs its
transitions. This continues until pmax has made all its transitions. When all processes
have performed their transitions in phase k, phase k + 1 starts by pmin executing its
transitions, and so on. Formally, we define a “scheduling function” α that defines the
order in which the processes run and the order in which they execute their transitions
during the different phases. For k : 1 ≤ k ≤ r, p ∈ P, and ` ∈ N, the value of α(k, p, `)
is a natural number j such that 0 ≤ j ≤ n. We will use j to identify the point at which
process p makes its `th move during phase k. These moves will be defined in terms of
configurations and transitions inside πSB whose indices are derived in a certain manner
from j defined below.



– α(k, p,0) := min
{

j| PointersOf(c j)(p) = k
}

. Phase k starts for process p at the
point where the value of its pointer becomes equal to k. Notice that α(1, p,0) = 0
for all p ∈ P (all processes are initially in phase 1); and that for k > 1, the transition
tα(k,p,0) is of the form

(
q,updatep,q′

)
, i.e., a transition in which p performs an

update (its (k−1)th update operation.)
– α(k, p, `+ 1) is defined to be the smallest j such that α(k, p, `) < j and t j ∈ ∆p

and PointersOf(c j)(p) = k. The (`+ 1)st move of process p is defined by the
next transition that belongs to ∆p. Notice that tα(k,p,`+1) is not an update transition
since we require that p remains in phase k after performing the transition. Also,
observe that α(k, p, `) is defined only for finitely many `. We define #(k, p) :=
max{`| α(k, p, `) is defined}, i.e., the value of #(k, p) is the number of transitions
process p executes during phase k.

In order to define πTSO, we first define the set of configurations that appear in πTSO. For
each k : 1 ≤ k ≤ r, p ∈ P, and ` : 0 ≤ ` ≤ #(k, p) we have a TSO-configuration dk,p,`
that is defined in terms of the SB-configurations that appear in πSB. We define dk,p,` by
defining its local state definition, buffer contents, and memory state. First, we define the
local states of the processes.

– StatesOf
(
dk,p,`

)
(p) := StatesOf

(
cα(k,p,`)

)
(p). When process p has performed

its `th transition during phase k, its state is identical to its state in the corresponding
SB-configuration cα(k,p,`).

– If p′ ≺ p then StatesOf
(
dk,p,`

)
(p′) := StatesOf

(
cα(k,p′,#(k,p′))

)
(p′). If p′ ≺ p

then the state of p′ will not change while p is making its moves. This state is given
by the state of p′ after it made its last move during phase k.

– If p ≺ p′ then StatesOf
(
dk,p,`

)
(p′) := StatesOf

(
cα(k,p′,0)

)
(p′). If p ≺ p′ then

the state of p′ will not change while p is making its moves. This state is given by
the state of p′ when it entered phase k (before it has made any moves during phase
k.)

The buffer contents of dk,p,` are defined as follows.

– BuffersOf
(
dk,p,`

)
(p) := SBtoTSO(p)

(
BufferOf

(
cα(k,p,`)

)
� k
)
. When process

p has performed its `th transition during phase k, the content of its buffer is defined
by (i) considering the buffer of the corresponding SB-configuration cα(k,p,`); (ii)
removing the prefix of that buffer up to the position of the pointer of p; (iii) consid-
ering only messages corresponding to p; and (iv) converting these messages to the
corresponding TSO-messages.

– If p′ ≺ p then BuffersOf
(
dk,p,`

)
(p′) := BufferOf

(
cα(k,p′,#(k,p′))

)
(p′). In a simi-

lar manner to the case of states, if p′ ≺ p then the buffer of p′ will not change while
p is making its moves.

– If p ≺ p′ then BuffersOf
(
dk,p,`

)
(p′) := BuffersOf

(
cα(k,p′,0)

)
(p′). Again, this

case can be explained in a similar manner to the case of states.

Finally, the memory state is defined by

– MemoryOf
(
dk,p,`

)
:= mem where BufferOf(cn)(k) = (mem, p′,x) for some pro-

cess p′ ∈ P and variable x ∈ X . This definition is consistent with the fact that all



processes have identical views of the memory when they are in the same phase k.
This view is defined by the memory component mem of the message at position k
in the buffer.

Notice that the values of StatesOf
(
dk,p,`

)
(p′) and BuffersOf

(
dk,p,`

)
(p′) above

are well-defined since the computation πSB is balanced.
The following lemma implies the result. More precisely, it shows the existence of

a TSO-computation that starts from an initial TSO-configuration and whose target has
the same local state definitions as the target cn of the SB-computation πSB.

Lemma 6. d1,pmin,0
πTSO−−−→TSO dr,pmax,#(r,pmax) for some TSO-computation πTSO. Fur-

thermore d1,pmin,0 is an initial TSO-configuration, and StatesOf
(
dr,pmax,#(r,pmax)

)
=

StatesOf(cn).

D Proof of Lemma 6

Lemma 7–9 show that the existence of the computation πTSO, while Lemma 11 and
Lemma 10 show the conditions on the initial and target configurations. For a word
w 6= ε and i : 0 ≤ i ≤ |w|, we define w� i to be the sufffix of w of length i, i.e., it is
the (unique) word w2 such that |w2|= i and w = w1 ·w2 for some word w1. Notice that
w� i = w� (|w|− i).

Lemma 7. If ` < #(k, p) then dk,p,`
tα(k,p,`+1)−−−−−−→TSO dk,p,`+1.

Proof. We recall that tα(k,p,`+1) is not an update operation. Let tα(k,p,`+1) be of
the form (q,op,q′). First, we show that StatesOf

(
dα(k,p,`)

)
(p) = q and that

StatesOf
(
dk,p,`+1

)
= StatesOf

(
dα(k,p,`)

)
[p←↩ q′].

By definition of α, we know that t j 6∈ ∆p for all j : α(k, p, `) < j <
α(k, p, `+ 1). Therefore, StatesOf(c j) = StatesOf

(
cα(k,p,`)

)
for all j : α(k, p, `) <

j < α(k, p, ` + 1). In particular, StatesOf
(
cα(k,p,`+1)−1

)
= StatesOf

(
cα(k,p,`)

)
.

From the definition of πSB it follows that cα(k,p,`+1)−1
tα(k,p,`+1)−−−−−−−→SB cα(k,p,`+1), and

hence StatesOf
(
cα(k,p,`)

)
= StatesOf

(
cα(k,p,`+1)−1

)
(p) = q. It also follows that

StatesOf
(
cα(k,p,`+1)

)
(p) = q′.

Next, we show that StatesOf
(
cα(k,p,`+1)

)
(p′) = StatesOf

(
cα(k,p,`)

)
(p′) if

p′ 6= p. By definition of d it follows that if p′ ≺ p then StatesOf
(
dk,p,`+1

)
(p′) =

StatesOf
(
cα(k,p′,#(k,p′))

)
(p′) = StatesOf

(
dk,p,`

)
(p′); and if p ≺ p′ then

StatesOf
(
dk,p,`+1

)
(p′) = StatesOf

(
cα(k,p′,0)

)
(p′) = StatesOf

(
dk,p,`

)
(p′).

Now, we proceed to prove the lemma. We consider the cases where op is a write or
a read operation. The other cases can be treated in a similar way.

– If op = w(x,v). By definition of α, we know that t j 6∈ ∆p for all j : α(k, p, `) <
j < α(k, p, ` + 1). Therefore, SBtoTSO(p)

(
BufferOf

(
cα(k,p, j)

)
� k
)

=

SBtoTSO(p)
(
BufferOf

(
cα(k,p,`)

)
� k
)

for all j : α(k, p, `) < j <

α(k, p, ` + 1). In particular, SBtoTSO(p)
(
BufferOf

(
cα(k,p,`+1)−1

)
� k
)

=

SBtoTSO(p)
(
BufferOf

(
cα(k,p,`)

)
� k
)
. From the definition of πSB



it follows that cα(k,p,`+1)−1
tα(k,p,`+1)−−−−−−−→SB cα(k,p,`+1), and hence

BuffersOf
(
dk,p,`+1

)
(p) = SBtoTSO(p)

(
BufferOf

(
cα(k,p,`+1)

)
� k
)

=

(x,v) · SBtoTSO(p)
(
BufferOf

(
cα(k,p,`+1)−1

)
� k
)

= (x,v) ·
SBtoTSO(p)

(
BufferOf

(
cα(k,p,`)

)
� k
)
= (x,v) ·BuffersOf

(
dk,p,`

)
(p).

Also in similar manner to the case of states we can show that
BuffersOf

(
dk,p,`+1

)
(p′) = BuffersOf

(
dk,p,`

)
(p′) in case p′ 6= p. In other

words, BufferOf
(
dk,p,`+1

)
= BufferOf

(
dk,p,`

)[
p←↩ (x,v) ·BufferOf

(
dk,p,`

)]
.

Suppose that BufferOf(cn)(k) = (mem, p,x). Then, MemoryOf
(
dk,p,`+1

)
=

MemoryOf
(
dk,p,`

)
= mem.

– If op = r(x,v). In a similar manner to the above reasoning about write
operations, we can show that SBtoTSO(p)

(
BufferOf

(
cα(k,p,`+1)−1

)
� k
)
=

SBtoTSO(p)
(
BufferOf

(
cα(k,p,`)

)
� k
)
. From the definition of πSB it follows that

cα(k,p,`+1)−1
tα(k,p,`+1)−−−−−−−→SB cα(k,p,`+1). There are two cases

• LastWrite
(
cα(k,p,`+1)−1, p,x

)
> k. By the definition of IndexOf it fol-

lows that there is an i : k < i ≤ |BufferOf
(
cα(k,p,`+1)−1

)
| such that

BufferOf
(
cα(k,p,`+1)−1

)
(i)= (mem, p,x), mem(x)= v, and there no j : i< j≤

|BufferOf
(
cα(k,p,`+1)−1

)
| and mem′ such that BufferOf

(
cα(k,p,`+1)−1

)
( j) =

(mem′, p,x). Since k < i it follows that
(
BufferOf

(
cα(k,p,`+1)−1

)
� k
)
(i) =

(mem, p,x), and and there no j : i < j ≤ |BufferOf
(
cα(k,p,`+1)−1

)
|

and mem′ such that
(
BufferOf

(
cα(k,p,`+1)−1

)
� k
)
( j) = (mem′, p,x).

By the definition of SBtoTSO it follows that there is an i :
1 ≤ i ≤ |SBtoTSO(p)

(
BufferOf

(
cα(k,p,`+1)−1

)
� k
)
| such that

SBtoTSO(p)
(
BufferOf

(
cα(k,p,`+1)−1

)
� k
)
(i) = (x,v), and (x,v′) 6∈

SBtoTSO(p)
(
BufferOf

(
cα(k,p,`+1)−1

)
� k
)
� (i−1) for all v′ ∈ V . Hence,

there is an i : 1 ≤ i ≤ |SBtoTSO(p)
(
BufferOf

(
cα(k,p,`+1)−1

)
� k
)
|

such that SBtoTSO(p)
(
BufferOf

(
cα(k,p,`)

)
� k
)
(i) = (x,v), and

(x,v′) 6∈ SBtoTSO(p)
(
BufferOf

(
cα(k,p,`)

)
� k
)
� (i−1) for all v′ ∈ V . By

definition of d it follows there is an i : 1 ≤ i ≤ |BuffersOf
(
dk,p,`

)
(p)| such

that BuffersOf
(
dk,p,`

)
(p)(i) = (x,v) and (x,v′) 6∈ BuffersOf

(
dk,p,`

)
(p)�

(i−1) for all v′ ∈V .
• LastWrite

(
cα(k,p,`+1)−1, p,x

)
= k. By the definition of IndexOf it follows

that there is no i : k < i ≤ |BufferOf
(
cα(k,p,`+1)−1

)
| and mem such that

BufferOf
(
cα(k,p,`+1)−1

)
(i) = (mem, p,x). Since k < i it follows that there

is no mem such that (mem, p,x) ∈
(
BufferOf

(
cα(k,p,`+1)−1

)
� k
)
. By the

definition of SBtoTSO it follows that there is no v′ ∈ V such that (x,v′) ∈
SBtoTSO(p)

(
BufferOf

(
cα(k,p,`+1)−1

)
� k
)
. Hence, there is no v′ ∈ V such

that (x,v′) ∈ SBtoTSO(p)
(
BufferOf

(
cα(k,p,`)

)
� k
)
. By definition of d it

follows there is no v′ ∈ V such that (x,v′) ∈ BuffersOf
(
dk,p,`

)
(p). Also,

by the definition of IndexOf it follows that BufferOf
(
cα(k,p,`+1)−1

)
(k) =

(mem, p′,x′) for some for some process p′ ∈ P and variable x′ ∈ X and mem
with mem(x) = v. This implies that BufferOf(cn)(k) = (mem, p,x). By defi-
nition of d it follows that MemoryOf

(
dk,p,`

)
= mem.



It remains to show that BufferOf
(
dk,p,`+1

)
= BufferOf

(
dk,p,`

)
and

MemoryOf
(
dk,p,`+1

)
= MemoryOf

(
dk,p,`

)
.

We kow that SBtoTSO(p)
(
BufferOf

(
cα(k,p,`+1)−1

)
� k
)

=

SBtoTSO(p)
(
BufferOf

(
cα(k,p,`)

)
� k
)
. From the definition of π, we know

that BufferOf
(
cα(k,p,`+1)−1

)
= BufferOf

(
cα(k,p,`+1)

)
. By definition of d,

we know that BufferOf
(
dk,p,`+1

)
= SBtoTSO(p)

(
BufferOf

(
cα(k,p,`+1)

)
� k
)

and that BufferOf
(
dk,p,`

)
= SBtoTSO(p)

(
BufferOf

(
cα(k,p,`)

)
� k
)
. There-

fore BufferOf
(
dk,p,`+1

)
= SBtoTSO(p)

(
BufferOf

(
cα(k,p,`+1)

)
� k
)

=

SBtoTSO(p)
(
BufferOf

(
cα(k,p,`+1)−1

)
� k
)
= SBtoTSO(p)

(
BufferOf

(
cα(k,p,`)

)
� k
)
=

BufferOf
(
dk,p,`

)
.

By definition of α, we know that MemoryOf
(
dk,p,`+1

)
= mem where

BufferOf(cn)(k) = (mem, p,x) for some process p ∈ P and variable x ∈ X .
By the definition of α it also follows that MemoryOf

(
dk,p,`

)
= mem, and hence

MemoryOf
(
dk,p,`+1

)
= MemoryOf

(
dk,p,`

)
.

Lemma 8. If p≺ pmax then dk,p,#(k,p) = dk,succ(p),0.

Proof. First, we show that StatesOf
(
dk,p,#(k,p)

)
(p′) = StatesOf

(
dk,succ(p),0

)
(p′) for

all p′ ∈ P. There are four cases:

– If p′ = p. Since p ≺ succ(p) it follows that StatesOf
(
dk,succ(p),`

)
(p) =

StatesOf
(
dk,p,#(k,p)

)
(p) for all ` : 0 ≤ #(k,succ(p)); and in particular

StatesOf
(
dk,succ(p),0

)
(p) = StatesOf

(
dk,p,#(k,p)

)
(p).

– If p′ = succ(p). We have that StatesOf
(
dk,p,`

)
(succ(p)) =

StatesOf
(
dk,succ(p),0

)
(succ(p)) for all ` : 0 ≤ #(k, p); and in particular

StatesOf
(
dk,p,#(k,p)

)
(succ(p)) = StatesOf

(
dk,succ(p),0

)
(succ(p)).

– If p′ ≺ p ≺ succ(p), then StatesOf
(
dk,succ(p),`

)
(p′) =

StatesOf
(
dk,p′,#(k,p′)

)
(p′) for all ` : 0 ≤ #(k,succ(p)) and in par-

ticular StatesOf
(
dk,succ(p),0

)
(p′) = StatesOf

(
dk,p′,#(k,p′)

)
(p′). Also,

StatesOf
(
dk,p,`

)
(p′) = StatesOf

(
dk,p′,#(k,p′)

)
(p′) for all ` : 0 ≤ #(k, p)

and in particular StatesOf
(
dk,p,#(k,p)

)
(p′) = StatesOf

(
dk,p′,#(k,p′)

)
(p′). Hence,

StatesOf
(
dk,succ(p),0

)
(p′) = StatesOf

(
dk,p,#(k,p)

)
(p′).

– If p ≺ succ(≺) p′, then StatesOf
(
dk,succ(p),`

)
(p′) = StatesOf

(
dk,p′,0

)
(p′)

for all ` : 0 ≤ #(k, p) and in particular StatesOf
(
dk,succ(p),0

)
(p′) =

StatesOf
(
dk,p′,0

)
(p′). Also, StatesOf

(
dk,p,`

)
(p′) = StatesOf

(
dk,p′,0

)
(p′)

for all ` : 0 ≤ #(k, p) and in particular StatesOf
(
dk,p,#(k,p)

)
(p′) =

StatesOf
(
dk,p′,0

)
(p′). Hence, StatesOf

(
dk,succ(p),0

)
(p′) =

StatesOf
(
dk,p,#(k,p)

)
(p′).

In a similar manner to the case of states, we can show that
BuffersOf

(
dk,p,#(k,p)

)
(p′) = BuffersOf

(
dk,succ(p),0

)
(p′) for all p′ ∈ P.

Finally, MemoryOf
(
dk,p,#(k,p)

)
= mem where BufferOf(cn)(k) = (mem, p,x) or

some process p∈ P and variable x∈ X . Also, MemoryOf
(
dk,succ(p),0

)
=mem, and hence

MemoryOf
(
dk,p,#(k,p)

)
= MemoryOf

(
dk,succ(p),0

)
.



Lemma 9. if k < r then dk,pmax,#(k,pmax)
updatepu
−−−−−−→TSO dk+1,pmin,0 for some pu ∈ P.

Proof. We take pu to be the process such that BufferOf(cn)(k + 1) is of the form
(mem, pu,x) for some mem and x. From the definition of SBtoTSO we know that
SBtoTSO(pu)

(
BufferOf

(
dk,pmax,#(k,pmax)

))
(k+1) = (x,mem(x)). From the definition

of α we know that operation
(
tα(k+1,p,0)

)
= updatep for each p ∈ P.

First, we show that StatesOf
(
dk,pmax,#(k,pmax)

)
= StatesOf

(
dk+1,pmin,0

)
.

Take any p ∈ P. From the definition of d we know that, for each p ∈ P,
we have that StatesOf

(
dk,pmax,#(k,pmax)

)
(p) = StatesOf

(
dk,p,#(k,p)

)
(p) =

StatesOf
(
cα(k,p,#(k,p))

)
(p) and that StatesOf

(
dk+1,pmin,0

)
(p) =

StatesOf
(
dk+1,p,0

)
(p) = StatesOf

(
cα(k+1,p,0)

)
(p). Since operation

(
tα(k+1,p,0)

)
=

updatep we have StatesOf
(
cα(k+1,p,0)−1

)
= StatesOf

(
cα(k+1,p,0)

)
. Also from the

definition of α it follows that t j 6∈ ∆p for all j : α(k, p,#(k, p)) < j < α(k + 1, p,0).
Therefore, StatesOf(c j) = StatesOf

(
cα(k,p,#(k,p))

)
for all j : α(k, p,#(k, p)) < j <

α(k + 1, p,0). In particular, StatesOf
(
cα(k+1,p,0)−1

)
= StatesOf

(
cα(k,p,#(k,p))

)
.

Therefore, StatesOf
(
cα(k+1,p,0)

)
= StatesOf

(
cα(k,p,#(k,p))

)
, and hence

StatesOf
(
dk+1,pmin,0

)
(p) = StatesOf

(
dk,pmax,#(k,pmax)

)
(p).

Next, we show that BuffersOf
(
dk,pmax,#(k,pmax)

)
=

BuffersOf
(
dk+1,pmin,0

)[
pu←↩ (x,mem(x)) ·BuffersOf

(
dk+1,pmin,0

)]
.

Take any p ∈ P. From the definition of d we know that, for
each p ∈ P, we have that BuffersOf

(
dk,pmax,#(k,pmax)

)
(p) =

BuffersOf
(
dk,p,#(k,p)

)
(p) = SBtoTSO(p)

(
BufferOf

(
cα(k,p,#(k,p))

)
� k
)

and that BuffersOf
(
dk+1,pmin,0

)
(p) = BuffersOf

(
dk+1,p,0

)
(p) =

SBtoTSO(p)
(
BufferOf

(
cα(k+1,pmin,0)

)
� k+1

)
. From BufferOf(cn)(k + 1) =

(mem, pu,x) it follows that SBtoTSO(p)
(
BufferOf

(
cα(k,p,#(k,p))

)
� k
)

=

(x,mem(x)) · SBtoTSO(p)
(
BufferOf

(
cα(k+1,pmin,0)

)
� k+1

)
if

p = pu, and that SBtoTSO(p)
(
BufferOf

(
cα(k,p,#(k,p))

)
� k
)

=

SBtoTSO(p)
(
BufferOf

(
cα(k+1,pmin,0)

)
� k+1

)
if p 6= pu. The result follows

immediately.
Finally, we show that MemoryOf

(
dk+1,pmin,0

)
=

MemoryOf
(
dk,pmax,#(k,pmax)

)[
x←↩ MemoryOf

(
dk,pmax,#(k,pmax)

)]
. By definition of d

we know that MemoryOf
(
dk+1,pmin,0

)
= mem MemoryOf

(
dk,pmax,#(k,pmax)

)
= mem′

where BufferOf(cn)(k) = (mem′, p′,x′) for some p′ ∈ P and x ∈ X . From the
definition of the SB-semantics it follows that mem = mem′ [x←↩ mem′(x)].

The following lemma shows that πTSO starts from an initial TSO-configuration.

Lemma 10. d1,pmin,0 is an initial TSO-configuration.

Proof. By the definitions of d and α we know that StatesOf(d1,pmin,0)(p) =
StatesOf(d1,p,0)(p) = StatesOf

(
cα(1,p,0)

)
(p) = StatesOf(c0)(p) = qinit.

Also, BufferOf(d1,pmin,0)(p) = BufferOf(d1,p,0)(p) =
SBtoTSO(p)

(
BufferOf

(
cα(1,p,0)

)
�1
)
= SBtoTSO(p)(BufferOf(c1)�1) = ε.

The result follows immediately for the definition of initial TSO-configurations.



The following lemma shows that the target of πTSO has the same local process states as
the target cn of the SB-computation πSB.

Lemma 11. StatesOf
(
dr,pmax,#(r,pmax)

)
= StatesOf(cn).

Proof. Take any p ∈ P. By the definitions of d and α it fol-
lows that StatesOf

(
dr,pmax,#(r,pmax)

)
(p) = StatesOf

(
dr,p,#(r,p)

)
(p) =

StatesOf
(
cα(r,p,#(r,p))

)
(p). By definition of α, we know that t j 6∈ ∆p for all

j : α(r, p,#(r, p))< j < n. Therefore, StatesOf(c j)(p) = StatesOf(cn)(p) for all j :
α(r, p,#(r, p))≤ j < n. In particular, StatesOf

(
cα(r,p,#(r,p))

)
(p) = StatesOf(cn)(p).

Hence StatesOf
(
dr,pmax,#(r,pmax)

)
(p) = StatesOf(cn)(p).

From TSO to SB In the following, we show the if direction of Theorem 1. Consider a
TSO-computation πTSO = c0

t1−→TSO c1 · · ·
tn−2−−−→TSO cn−1

tn−→TSO cn with c0 = InitTSO.
To simplify the presentation, we assume without loss of generality that the last opera-
tion performed by each process is an atomic read-write. This implies that the process
buffers in the TSO-configuration cn are empty (i.e., BuffersOf(cn)(p) for all process
p ∈ P). Moreover, we assume that the given concurrent system M does not contain
fence operations since they can be simulated with atomic read-write operations. In the
following, we will derive a SB-computation πSB such that StatesOf(target (πSB)) =
StatesOf(cn).

The idea is to construct the run πSB such that the buffer content (say b =
b(1)b(2) · · ·b(m+1)) in the configuration target (πSB) is exactly the sequence of succes-
sive shared memory contents induced by the computation πTSO. Then, the computation
of πSB consists of m = (|b|− 1) phases (henceforth referred as the phases 1,2, . . . ,m).
Let d0,d1, . . . ,dm be a sequence of SB-configurations such that the phase j : 1≤ j ≤ m
starts at configuration d j−1 and ends at the configuration d j. The effect of a phase j is
to append the message b( j+1) to the tail of the buffer of d j. This is done by simulating
a run of the process producing the new message b( j+1).

For every p ∈ P, let ∆w
p ⊆ ∆p (resp. ∆u

p ⊆ ∆p∪{updatep}) be the set of write (resp.
update) and atomic read-write operations that can be performed by the process p.

Let I = i1, . . . , im be the maximal sequence of indices such that 1 ≤ i1 < i2 < · · ·<
im ≤ n and for every j : 1 ≤ j ≤ m, we have ti j is an update operation or an atomic
read-write operation (i.e., ti j ∈

⋃
p∈P ∆u

p).
For every j : 1 ≤ j ≤ m, let ProcessOf( j) be the process p ∈ P such that ti j ∈ ∆u

p
is an update operation or an atomic read-write operation of p. We define Match( j)
(inductively on j) to be the index i = min

{
k| (tk ∈ ∆w

p ) ∧ (@` < j,Match(`) = k)
}

of
the first write (resp. atomic read-write) operation of p which is not yet matched with any
update operations (resp. atomic read-write). This means that the update (resp. atomic
read-write) operation ti j corresponds to the execution of the write (resp. atomic read-
write) operation ti. Moreover, we can show that if ti j is an atomic read-write operation
then Match( j) = i j.

Let b = b(1)b(2) · · ·b(m+ 1) be the SB-buffer content induced by the sequence
ti1 , . . . , tim of memory updates and atomic read-write operations from the initial buffer
content. I.e., the SB-buffer b satisfies the following two conditions:



– b(1) = (meminit,qinit,xinit) = (mem1, p1,x1). Initially, the buffer contains a single
message where meminit is the initial value of the memory.

– For every j : 1 ≤ j ≤ m, b( j + 1) = (mem j+1, p j+1,x j+1) such that mem j+1 =
mem j [x j+1←↩ v j+1], p j+1 = ProcessOf( j), i = Match( j), and ti is on the fol-

lowing form: ti =
(

q j,w(x j+1,v j+1),q′j
)

or ti =
(

q j,arw(x j+1,v j,v j+1),q′j
)

. The
new element b( j+1) is appended to the tail of the buffer. The value of the variables
in the new element are identical to those in the previous last element b( j) expect
that the value of the variable x j+1 has been updated to v j+1.

Let d0 = InitSB be the initial SB-configuration. We define (inductively) the se-
quence d1, . . . ,dm of SB-configurations as follows: For every j : 1≤ j ≤ m:

First, we define the local states of the processes:

– StatesOf(d j)(p′) = StatesOf(d j−1)(p′) for all p′ ∈ P such that p′ 6=
ProcessOf( j). The state of the process p′ in the SB-configuration d j is identical
to its state in the SB-configuration d j−1. In fact, the configuration d j−1 is reachable
from the configuration d j by a run where ProcessOf( j) is the only active process.

– StatesOf(d j)(p) = StatesOf(ci)(p) with i = Match( j) and p =
ProcessOf( j). The state of the process p in the SB-configuration d j corre-
sponds to the state of the process p in the TSO-configuration ci (reachable after
performing the write operation ti associated with the update operation ti j ).

The buffer content of d j is defined as follows:

– BufferOf(d j) = b(1)b(2) · · ·b( j+1). The buffer content of BufferOf(d j) corre-
sponds to the sequence of messages induced by the sequence ti1 , . . . , ti j of memory
updates and atomic read-write operations from the initial buffer content.

Finally, the pointer of each process is defined by:

– PointersOf(d j)(p′) = PointersOf(d j−1)(p′) for all p′ ∈ P such that p′ 6=
ProcessOf( j). The pointer of the process p′ in the SB-configuration d j is iden-
tical to its pointer in the SB-configuration d j−1.

– PointersOf(d j)(p) = max({k| ik ≤ Match( j)} ∪ {0}) + 1 with p =
ProcessOf( j). The process p points to the element corresponding to the
current content of the shared memory in the TSO-configuration ci (i.e.,
BufferOf(d j)(k) = (MemoryOf(ci) , p′,x′) for some p′ ∈ P and x′ ∈ X).
Furthermore, if r = PointersOf(d j)(p) then tir corresponds to the last update
or atomic read-write operation performed by the concurrent system M under
TSO before reaching ci. Observe that if ti is an atomic read-write operation then
Match( j) = i j and PointersOf(d j)(p) = j+1.

The relation between the SB-configuration d j and the TSO-configuration ci is given
by the following lemma which ensures that d j and ci have the same state and the se-
quence of pending elements associated with the process ProcessOf( j).



Lemma 12. For every j : 1 ≤ j ≤ m, let p = ProcessOf( j), i = Match( j) and k =
PointersOf(d j)(p). Then, we have:

1. StatesOf(d j)(p) = StatesOf(ci)(p),
2. SBtoTSO(p)(BufferOf(d j)� k) = BuffersOf(ci)(p), and
3. BufferOf(d j)(k) = (MemoryOf(ci) , p′,x′) for some p′ ∈ P and x′ ∈ X.

Proof. By construction, we have that the properties 1 and 3 hold. Moreover, if ti is
an atomic read-write then SBtoTSO(p)(BufferOf(d j)� k) = BuffersOf(ci)(p) = ε

since PointersOf(d j)(p) = j+1 and BufferOf(d j) = b(1)b(2) · · ·b( j+1).
Now, we will show that for any pending element (x,v) of BuffersOf(ci),

there is a unique index k ≤ j′ ≤ j such that SBtoTSO(p)(b( j′+1)) = (x,v) (i.e.,
BuffersOf(ci)(p) is a subword of SBtoTSO(p)(BufferOf(d j)� k)). If there is a
pending element (x,v) in the buffer StatesOf(ci)(p) associated with the process p
then this element is issued by a write operation ti′ of the process p. Notice that the write
operation ti′ should be performed before ti since i is the index of the last write opera-
tion performed by the process p before reaching the configuration ci. This implies that
i′ ≤ i. Let i j′ be the (unique) index of the matching update operation associated with the
write operation ti′ (i.e., i′ = Match( j′)). Such index j′ exists since in the target TSO-
configuration cn all the buffers are empty. This implies that j′≤ j since i′≤ i and the SB-
buffer BufferOf(d j) is FIFO. In addition, we have k = PointersOf(d j)(p)≤ j′ since
the index k corresponds to the last update operation tik of p performed before reaching
the configuration ci and the update operation ti j′ has not been yet performed (i.e., its
associated matching write operation ti′ is still pending in the buffer BuffersOf(ci)(p)
associated with the process p). Hence, the element b( j′+1) associated with the update
operation ti j′ (and so with the write operation ti′ ) is in BufferOf(d j)� k and we have
SBtoTSO(p)(b( j′+1)) = (x,v) (see the definition of the SB-buffer b).

Similarly, we can show that for any index j′ : k ≤ j′ ≤ j such that
SBtoTSO(p)(b( j′+1)) 6= ε there is a unique index r : 1 ≤ r ≤ |BuffersOf(ci) |
such that SBtoTSO(p)(b( j′)) = BuffersOf(ci)(r). This means that
SBtoTSO(p)(BufferOf(d j)� k) is a subword of BuffersOf(ci)(p). Hence, we
have SBtoTSO(p)(BufferOf(d j)� k) = BuffersOf(ci)(p). ut

Lemmata 13 and 14 imply the if direction of Theorem 1. More precisely, they show
the existence of a SB-computation that starts from an initial SB-configuration d0 and
whose target dm has the same local state definition as the target cn of πTSO.

Lemma 13. StatesOf(dm) = StatesOf(cn).

Proof. For every process p ∈ P, let i : 1 ≤ i ≤ n be the index of the last operation
ti performed by the process p. Recall that we assume that the last operation per-
formed by any process along the computation πTSO is an atomic read-write opera-
tion. Let j : 1 ≤ j ≤ m be the index such that i = Match( j). (In fact, we have i = i j
since ti j is an atomic read-write operation.) Since ti is the last operation performed
by p, we have StatesOf(ci)(p) = StatesOf(cn)(p). On the other hand, we have
StatesOf(d j)(p)= StatesOf(dm)(p) since ti j+1 , . . . , tim are not operations of the pro-
cess p (see the definition of the sequence of SB-configurations d0,d1, . . . ,dm). Now, we



can use Lemma 12 to show that StatesOf(d j)(p) = StatesOf(ci)(p). This implies
that StatesOf(dm) = StatesOf(cn). ut

Lemma 14. For every j : 1≤ j ≤ m, d j−1
π j−−→SB d j.

Proof. Let p = ProcessOf( j) and i = Match( j). Let i′ be the minimal index such that
for every ` : i′ ≤ ` < i, t` /∈ ∆w

p is not a write or an atomic read-write operation of the
process p. In the case that such index does not exist, we simply take i′ = i. Then, we
define inductively the sequence of SB-configurations di′−1

j , . . . ,di−1
j such that for every

` : i′−1≤ `≤ i−1, the SB-configuration d`
j is defined as follows:

First, we define the local states of the processes:

– StatesOf
(

d`
j

)
(p′) = StatesOf(d j−1)(p′) for all p′ ∈ P such that p′ 6= p. The

state of the process p′ in the SB-configuration d`
j is the same as the state of the

process p′ in the SB-configuration d j−1.

– StatesOf
(

d`
j

)
(p) = StatesOf(c`)(p). The state of the process p in the SB-

configuration d`
j corresponds to its state in the TSO-configuration c`.

The buffer content of d`
j is defined as follows:

– BufferOf
(

d`
j

)
= b(1)b(2) · · ·b( j). The buffer content of BufferOf

(
d`

j

)
corre-

sponds to the sequence of messages induced by the sequence ti1 , . . . , ti j−1 of memory
updates and atomic read-write operations from the initial buffer content.

Finally, the pointer of each process is defined by:

– PointersOf
(

d`
j

)
(p′) = PointersOf(d j−1)(p′) for all p′ ∈ P such that p′ 6= p.

The pointer of the process p′ in the SB-configuration d j is identical to its pointer in
the SB-configuration d j−1.

– PointersOf
(

d`
j

)
(p) = (max({k| ik ≤ `}∪{0}))+1. The process p points to the

element corresponding to the current content of the shared memory in the TSO-
configuration c`. If r = PointersOf

(
d`

j

)
(p) then tir corresponds to the last update

or atomic read-write operation performed by the concurrent system M under TSO
before reaching c`.

The relation between the SB-configuration d`
j and the TSO-configuration c` is given

by the following lemma (whose proof is similar to Lemma 12):

Lemma 15. Let ` : (i′−1)≤ ` < i and k = PointersOf
(

d`
j

)
(p). Then, we have

1. StatesOf
(

d`
j

)
(p) = StatesOf(c`)(p),

2. SBtoTSO(p)
(
BufferOf

(
d`

j

)
� k
)
= BuffersOf(c`)(p), and



3. BufferOf
(

d`
j

)
(k) = (MemoryOf(c`) , p`,x`) for some p` ∈ P and x` ∈ X.

Lemmata 16, 17, and 18 show the existence of the computation π j of Lemma 14.

Lemma 16. d j−1 = di′−1
j .

Proof. To prove Lemma 16, it is sufficient to show that StatesOf(d j−1)(p) =

StatesOf
(

di′−1
j

)
(p) and PointersOf(d j−1)(p) = PointersOf

(
di′−1

j

)
(p). From

the definition of the index i′, one of the following two cases holds

– If (i′ − 1) = 0 then for every r : 1 ≤ r < j, we have p 6= ProcessOf(r)
(i.e., the transition tir /∈ tup is not an update or an atomic read-write opera-
tion of the process p). This means that the state and the pointer of p along
the sequence of SB-configurations InitSB = d0 = d1 = · · · = d j−1 are kept
the same. This implies that StatesOf(InitSB)(p) = StatesOf(d j−1)(p) and
PointersOf(InitSB)(p) = PointersOf(d j−1)(p) = 1. On the other hand,

we have StatesOf(ci′−1)(p) = StatesOf(InitSB)(p) = StatesOf
(

di′−1
j

)
(p)

and PointersOf
(

di′−1
j

)
(p) = 1. Hence, we have StatesOf(d j−1)(p) =

StatesOf
(

di′−1
j

)
(p) and PointersOf(d j−1)(p) = PointersOf

(
di′−1

j

)
(p).

– If i′ > 1 then ti′−1 ∈ ∆w
p is a write or an atomic read-write operation of the pro-

cess p. Let j′ be the unique index such that i′ − 1 = Match( j′) (i.e., ti j′ is the
update or atomic read-write operation associated with ti′−1). Since i′− 1 < i, we
have j′ < j. We can use Lemma 12 and the definition of the pointer of the pro-
cess p in d j′ and di′−1

j to show that StatesOf
(
d j′
)
(p) = StatesOf(ci′−1)(p)

and PointersOf
(
d j′
)
(p) = PointersOf

(
di′−1

j

)
(p). Moreover, for every r :

j′ < r < j, we have p 6= ProcessOf(r) (i.e., the transition tir /∈ tup is not an
update or an atomic read-write operation of the process p). This means that
the state and the pointer of p along the sequence of SB-configurations d j′ =
d j′+1 = · · · = d j−1 are kept the same. This implies that StatesOf

(
d j′
)
(p) =

StatesOf(d j−1)(p) and PointersOf
(
d j′
)
(p) = PointersOf(d j−1)(p). Hence,

we have StatesOf(d j−1)(p) = StatesOf
(
d j′
)
(p) = StatesOf

(
di′−1

j

)
(p) and

PointersOf(d j−1)(p) = PointersOf
(
d j′
)
(p) = PointersOf

(
di′−1

j

)
(p). ut

Lemma 17. For every ` : (i′−1)≤ ` < (i−1), we have d`
j−→SB d`+1

j or d`
j = d`+1

j .

Proof. We recall that c`
t`+1−−−→TSO c`+1, StatesOf(c`)(p) = StatesOf

(
d`

j

)
(p), and

StatesOf(c`+1)(p) = StatesOf
(

d`+1
j

)
(p) (see Lemma 15). We consider three cases

depending on the form of the transition t`+1:

– If t`+1 ∈ ∆p′ is a transition of a process p′ 6= p and t`+1 is not an atomic read-write
operation, then we have d`

j = d`+1
j since StatesOf(c`)(p) = StatesOf(c`+1)(p)



(i.e., the state of the process p has not been modified), and PointersOf
(

d`
j

)
(p) =

PointersOf
(

d`+1
j

)
(p) (i.e., the indices of the last update or atomic read-write

operation before reaching c` and c`+1 are the same).
– If t`+1 ∈ ∆′ is an update operation or an atomic read-write operation of a pro-

cess p′ 6= p, then we can show that d`
j

t−→SB d`+1
j with t is an update operation

of the process p. This is possible since we can show that PointersOf
(

d`+1
j

)
=

PointersOf
(

d`
j

)
+ 1 and StatesOf(c`)(p) = StatesOf(c`+1)(p). In fact,

PointersOf
(

d`
j

)
is pointing to the index of the last update (or atomic read-write)

operation performed before reaching the configuration c` and PointersOf
(

d`+1
j

)
is exactly pointing to the next last update (or atomic read-write) operation before
reaching the configuration c`+1 which is the index r : 2 ≤ r ≤ (m+ 1) such that
ir−1 = `+1.

– If t`+1 ∈ ∆p then t`+1 is necessarily a nop or a read operation of the process
p. This implies that the indices of the last update or atomic read-write oper-
ation before reaching c` and c`+1 are the same (i.e., PointersOf

(
d`

j

)
(p) =

PointersOf
(

d`+1
j

)
(p) = k). Moreover, we can show that d`

j
t`+1−−−→SB d`+1

j since
we have (from Lemma 15):

• The states of the process p in c` (resp. c`+1) and d`
j (resp. d`+1

j ) are the same

(i.e., StatesOf(c`)(p) = StatesOf
(

d`
j

)
(p), and StatesOf(c`+1)(p) =

StatesOf
(

d`+1
j

)
(p) ).

• The process p has the the same sequence of pending write operations
in the configurations c` and d`

j (i.e., SBtoTSO(p)
(
BufferOf

(
d`

j

)
� k
)
=

BuffersOf(c`)(p)).
• The memory content in c` and the pointed memory content by the process p

in d`
j are the same (i.e., BufferOf

(
d`

j

)
(k) = (MemoryOf(c`) , p`,x`) for some

p′ ∈ P and x′ ∈ X). ut

Lemma 18. di−1
j

ti−→SB d j.

Proof. Recall that ci−1
ti−→SB ci. The fact that di−1

j
ti−→SB d j is an immediate consequence

of the definition of the configurations di−1
j and d j and mainly the following facts:

(1) the states of the process p in ci−1 (resp. ci) and di−1
j (resp. d j) are the same, (2)

BufferOf
(

di−1
j

)
= b(1)b(2) · · ·b( j) and BufferOf(d j) = b(1)b(2) · · ·b( j + 1), (3)

the states and the pointers of any process p′ 6= p in di−1
j and d j are the same, and (4)

the process p in di−1
j (resp. d j) is pointing to the index of the last update (or atomic

read-write) operation performed before reaching the configuration ci−1 (resp. ci). ut



E Proof of Lemmas in Section 5

Lemma 1. The relation v is a well-quasi ordering on SB-configurations.

Proof. This is an immediate consequence of the fact that (i) the sub-word relation is a
well-quasi ordering on finite words [15], and that (ii) the number of states and messages
(associated with last write operations and pointers) that should be equal, is finite. ut

Lemma 2. −→SB is effectively monotonic wrt. v.

Proof. We need to show the following: For every SB-configurations c1,c′1, and c2 such
that c1−→SB c′1 and c1 v c2, there exists an SB-configuration c′2 such that c2

∗−→SB c′2
and c′1 v c′2. Also, we need to show that, given c1,c′1,c2, we can compute c′2 and also
compute a run π such that c2

π−→SB c′2.
The interesting case is when an update operation is performed (i.e., c1

t−→SB c′1 with
t = updatep). The effect of such operation is moving the pointer of p one step to the
right. Since c1 v c2, we know that there is index i such that the element at position
i in BufferOf(c2) is matched with the element pointed by the process p in c1 with
respect to the ordering relationv. Moreover, the element at position i in BufferOf(c2)
corresponds to the position of the pointer of p in c2. There is also an index i < j such
that the element at position j in BufferOf(c2) is matched with the element one step
to the right of the pointer of p in c1. From the configuration c2 the concurrent system
can now perform several update operations to move the pointer of p from the position
i to the position j and reach a configuration c′2. (In fact, the number of such update
operations is bounded by the size of the buffer of c2). Moreover, we can show that
c′1 v c′2 since there is no element associated with a last write operation at any position
k with i < k < j.

Let us assume that c1
t−→SB c′1 with t ∈ ∆. Then, we can show that there is a con-

figuration c′2 such that c′1
t−→SB c′2 and c′1 v c′2 since c1 and c2 have the same states and

the same sequence of elements associated with the last write operations and pointers in
their respective buffers. Observe that for ARW and Fence operations, we have for every
p ∈ P, PointersOf(c1)(p) = |BufferOf(c1) | if and only if PointersOf(c2)(p) =
|BufferOf(c2) |. ut

Computing the set of minimal elements. Let C be a set of SB-configurations. We
use Min(C) to denote the smallest subset of C such that for all c′ ∈ C there exists an
SB-configuration c ∈ Min(C) such that c v c′. The set Min(C) is called the minor set
of C. Notice that Min(C) is finite since v is a well-quasi ordering.

In the following, we show that it is possible to compute the set of minimal elements
of a regular set of SB-configurations

Lemma 19. Let A be an SB-automaton. Then it is possible to compute Min(L(A)).



Proof. Let A =
(
S,∆,Sfinal,h

)
. In the following, we show that if a configuration c =

(q,b,z) is in the minor set of L(A) then |b| ≤ (|P|+ |P||X |)(|S|+1). The proof of this
fact is done by contradiction:

Let us assume that c = (q,b,z) is in the minor set of L(A) and |b| > (|P|+
|P||X |)(|S|+ 1). Then, there is a word w ∈ Σ∗ such that w ∈ L

(
A,h(q)

)
and (b,z) =

decoding(w). This implies that |w| = |b| and for every i ∈ {1, . . . , |w|}, w(i) =
(b(i),σi) with σi = {p ∈ P |z(p) = i}. Moreover, let i1, . . . , im ∈ {1, . . . , |w|}, with
i1 < i2 < · · · < im and m ≤ (|P|+ |P||X |), be the sequence of indices of w such that
for j : 1 ≤ j ≤ m, w(i j) is either a symbol associated with a last write operation
of some process or a process pointer. Therefore, w can be decomposed as follows:
w = u1w(i1)u2w(i2)u3 · · ·umw(im). Since |w| > (|P|+ |P||X |)(|S|+1), then there is an
index k : 1 ≤ k ≤ m such that |uik | > |S|. Now, we can use the pumping lemma for
regular languages to show that there are x,y,z such that uik = tyz, |tz| ≤ |S|, and the
word w′ = u′1w(i1)u′2w(i2)u′3 · · ·u′mw(im) is in L

(
A,h(q)

)
with for every j : 1 ≤ j ≤ m,

u′i j
= ui j if j 6= k and u′ik = tz. Let c′ = (q,b′,z′) be the SB-configuration such that

(b′,z′) = decoding(w′). This implies that |w′|= |b′| for every i ∈ {1, . . . , |w′|}, w′(i) =
(b′(i),σi) with σi = {p∈ P |z′(p) = i}. Observe that then, the word u′ik does not contain
any symbol associated with a last write operation of some process or a process pointer
in the SB-configuration c′. Then, we can show that c′ v c with c′ 6= c ( which contradicts
the fact that c is in the minor set of L(A).

To construct the minor set L(A) , we can use an enumerative algorithm which
compares any two configurations c = (q,b,z) ∈ L(A) and c′ = (q,b′,z′) ∈ L(A) with
|b|, |b′| ≤ (|P|+ |P||X |)(|S|+1), and discards the non-minimal one. ut

Lemma 3. We can compute an SB-automaton Ainit such that L
(
Ainit

)
= InitSB. For a

set Target of local state definitions, we can compute an SB-automaton Afinal (Target)
such that L

(
Afinal (Target)

)
:=
{(

q,b,z
)
| q ∈ Target

}
.

Proof. Recall that the set InitSB of initial SB-configurations contains all configu-
rations of the form

(
qinit,binit,zinit

)
where |binit| = 1, and for all p ∈ P, we have

that qinit(p) = qinit
p , and zinit(p) = 1. Moreover, the buffer contains a single message

of the form (mem, p,x), where p ∈ P, x ∈ X , and mem represents some value of
the memory. We can construct the SB-automaton Ainit =

(
S0,∆0,S

final
0 ,h0

)
such that

L
(
Ainit

)
= InitSB as follows:

– The set of states S0 contains only three states sinit, serror, and sfinal.
– The set of transitions ∆0 is the smallest set such that for every SB-message
(mem, p,x), where p ∈ P, x ∈ X , and mem represents some value of the memory,
we have (s0,((mem, p,x) ,P) ,sfinal) is in ∆0.

– The set of final states Sfinal
0 contains only the state sfinal.

– The function h0 is defined as follows h0(q) = sinit if q = qinit and h0(q) = serror
otherwise.

Then, it is easy to see that L
(
Ainit

)
= InitSB.



Let Target be a set of local state definitions. We recall that an SB-configuration c
is said to be balanced if PointersOf(c)(p) = PointersOf(c)(p′) for all p, p′ ∈ P.
Here, we can restrict ourselves to balanced configurations as if Target are reachable
in some configurations, one can fire some updates to obtain balanced configurations.
Then, we can compute the SB-automaton Afinal (Target) =

(
S,∆,Sfinal,h

)
as follows:

– The set of states S contains only three states si, se, and sf .
– The set of transitions ∆ is the smallest set such that the following condi-

tion is satisfied: For every SB-message (mem, p,x), where p ∈ P, x ∈ X , and
mem represents some value of the memory, we have (si,((mem, p,x) , /0) ,si),
(si,((mem, p,x) ,P) ,sf ), and (sf ,((mem, p,x) , /0) ,sf ) are in ∆.

– The set of final states Sfinal
0 contains only the state sf .

– The function h0 is defined as follows h0(q) = si if q ∈ Target and h0(q) = se
otherwise.

Then, we can easily show that L
(
Afinal (Target)

)
:=
{(

q,b,z
)
| q ∈ Target

}
. ut

Lemma 4 For an SB-automaton A we can compute an SB-automaton A↑ such that
L(A↑) = L(A)↑.

Proof. Let us assume that A is given by the tuple
(
S,∆,Sfinal,h

)
. One way to con-

struct the SB-automaton A↑ is based on the use of Lemma 19 which allows us to com-
pute the finite set Min(L(A)) of SB-configurations. Let us assume that Min(L(A)) =
{c1, . . . ,cn}. For every i : 1 ≤ i ≤ n, we can construct an SB-automaton Ai such that
L(Ai) = {ci}↑. Let A↑ be the SB-automaton defined as

⋃n
i=1 Ai. Then, we can show

that L(A↑) = L(A)↑ since L(A)↑= Min(L(A))↑, Min(L(A))↑=
⋃n

i=1 L(A)i ↑, and
L(A↑) =

⋃n
i=1 L(A)i↑. ut

Lemma 5. For a transition t and a SB-automaton A, we can compute a SB-automaton
Pret (A) such that L(Pret (A)) = Pret (L(A)).

Proof. Let us assume that A =
(
S,∆,Sfinal,h

)
. We consider six cases depending on the

form of the transition t:

– Nop: If t = (q,nop,q′)∈ ∆p with p∈ P then we can construct A′ =
(

S′,∆′,S
′
final,h

′
)

as follows: (1) the set of states of A′ contains the set of states of A and a new state
serror such that serror /∈ S (i.e., S′ = S∪{serror}), (2) the set of transitions ∆′ is equal
to the set ∆, (3) the set of final states S

′
final is defined by the set Sfinal, and (4) the

function h′ is defined as follows h′(q) = h(q′) for all q and q′ such that q(p) = q
and q′ = q [p←↩ q′], and h′(q) = serror otherwise.

– Write to store: If t = (q,w(x,v),q′) ∈ ∆p with p ∈ P then we can construct A′ =(
S′,∆′,S

′
final,h

′
)

as follows: A′ contains all states of A and two new states serror

and s f (i.e., S′ = S∪ {serror,s f }). The final state S
′
final consists of the final state

s f (i.e., Sfinal′ = {s f }). The transition relation of A′ is defined as the smallest re-
lation such that: (1) A′ contains all the transitions of A (i.e., ∆ ⊆ ∆′), and (2) if



(
s,((mem′, p′,x′) ,σ),s′

)
and

(
s′,((mem′ [x←↩ v] , p,x) , /0),s′′

)
are two transitions

of A′ such that s′′ ∈ Sfinal, then
(
s,((mem′, p′,x′) ,σ),s f

)
is also a transition of A′.

The function h′ is defined as follows h′(q) = h(q′) for all q and q′ such that q(p) = q
and q′ = q [p←↩ q′], and h′(q) = serror otherwise.

– Update: If t = updatep with p ∈ P then we can construct A′ =
(

S′,∆′,S
′
final,h

′
)

as follows: A′ has as a set of states S′ = S ∪ ∆ ∪ (S × {F}). The set of fi-
nal states is defined by the set S

′
final = Sfinal × {F}. The transition relation of

A is defined as the smallest relation such that: (1) if (s,a,s′) is a transition
of A then (s,a,s′) and ((s,F),a,(s’,F)) are transitions of A′, and (2) for every
transitions t =

(
s,((mem′, p′,x′) ,σ′),s′

)
∈ ∆ and t ′ =

(
s′,((mem′′, p′′,x′′) ,σ′′ ∪

{p}),s′′
)
∈ ∆, A′ contains the following transitions

(
s,((mem′, p′,x′) ,σ′∪{p}), t ′

)
and

(
t ′,((mem′′, p′′,x′′) ,σ′′),(s′′,F)

)
. Finally, we have h′ = h.

– Read: If t = (q, r(x,v),q′) ∈ ∆p with p ∈ P then we can construct A′ =(
S′,∆′,S

′
final,h

′
)

as follows: A′ has as a set of states S′ = S∪ (S×{1})∪{serror}.

The set of final states is defined by the set S
′
final = Sfinal×{1}. The transition relation

of A′ is defined as the smallest relation such that: if (s,a,s′) is a transition of A then
there are three cases depending on a: (i) if a is not of the form ((mem, p′,x′) ,σ∪
{p}) or ((mem, p,x) ,σ), then (s,a,s′) and ((s,1),a,(s′,1)) are transitions of
A′, else (ii) if a is of the form ((mem, p′,x′) ,σ∪ {p}) or ((mem, p,x) ,σ) with
mem(x) = v, then (s,a,(s′,1)) and ((s,1),a,(s′,1)) are transitions of A′, other-
wise (iii) if a is of the form ((mem, p′,x′) ,σ ∪ {p}) or ((mem, p,x) ,σ) with
mem(x) 6= v, then ((s,1),a,(s′,1)) is a transition of A′. The function h′ is defined
as follows h′(q) = h(q′) for all q and q′ such that q(p) = q and q′ = q [p←↩ q′], and
h′(q) = serror otherwise.

– ARW: If t = (q,arw(x,v,v′),q′) ∈ ∆p with p ∈ P then we can construct A′ =
(S′,∆′,S

′
final,h) as follows: A′ has as a set of states S′ = S∪{s f ,serror} where s f

and serror are new states. The set of final states is defined by the set S
′
final = {s f }.

The transition relation of A′ is defined as the smallest relation such that: (1) ∆⊆ ∆′,
and (2) if (s,((mem′, p′,x′) ,σ),s′) and (s′,((mem′ [x←↩ v′] , p,x) ,{p}),s′′) are tran-
sitions of A with s′′ ∈ Sfinal and mem′(x) = v, then (s,((mem′, p′,x′) ,σ∪{p}),s f )
is a transition of A′. The function h′ is defined as follows h′(q) = h(q′) for all q and
q′ such that q(p) = q and q′ = q [p←↩ q′], and h′(q) = serror otherwise.

– Fence: t = (q, fence,q′)∈ ∆p with p∈ P then we can construct A′ = (S′,∆′,S
′
final,h)

as follows: A′ has as set of states S′ = S ∪ {s f ,serror} where s f and serror are
new states. The set of final states is defined by the set S

′
final = {s f }. The tran-

sition relation of A′ is defined as the smallest relation such that: (1) ∆ ⊆ ∆′,
and (2) if (s,((mem′, p′,x′) ,σ∪{p}),s′) is a transition of A with s′ ∈ Sfinal, then
(s,((mem′, p′,x′) ,σ∪{p}),s f ) is a transition of A′. The function h′ is defined as
follows h′(q) = h(q′) for all q and q′ such that q(p) = q and q′ = q [p←↩ q′], and
h′(q) = serror otherwise. ut



Theorem 2. The reachability algorithm always terminates returning the correct an-
swer.

Proof. It follows from Lemmata 3, 1, 4, 2, and 5 and from the properties of well struc-
tured transition systems [1]. ut

F Correctness of Algorithm 2 for fence insertion

Theorem 3. For a concurrent system P, a placement constraint G, and a finite set
Target, Algorithm 2 terminates and returns FG

min (P)(Target).

Proof. We show termination and partial correctness of Algorithm 2. We start with
termination and define the function rank(W ,C ) = (n0, . . .nK) where K is the total
number of local states in P, i.e., K = |Q|, and ni is a pair (nW

i ,nC
i ) where nW

i is
the size of

{
F | F ∈W with |F |= i

}
(nC

i is defined analogously). We write n <p n′,
for n = (a,b) and n′ = (a′,b′), to mean (a < a′∨ (a = a′∧b < b′)). We define the
lexicographic ordering <lex as follows: (n0, . . .nK) <lex (n′0, . . .n

′
K) iff ∃i : 0 ≤ i ≤

K.
(

ni <p n′i∧∀ j : 0≤ j < i.
(

n j ≤p n′j
))

. Observe that there will never be sets with

a cardinality larger or equal to K + 1 in W or C . We show rank(W ,C ) strictly de-
creases at each iteration of the loop. Assume W ′,C ′ are obtained from W ,C after one
iteration of the loop; then W ′,C ′ are derived by removing a set F from W and possibly:
i) adding a number of sets with strictly larger cardinality to W , or ii) moving F to C .
Each one of these operations strictly decreases rank(W ,C ), which proves termination
by well foundedness of <lex on the image of rank.

In case Target is reachable even if all fences in G are inserted (in particular if
reachable under SC-semantics), then the algorithm will never get to line 13, and will
either exit at line 8 or keep on adding sets included in G to W . Termination ensures it
will eventually exit at line 8 with C = /0. Concretely, this will be due to a trace that does
not involve overtakings of write operations (hence possible under SC-semantics) or that
involves only overtakings of write operations along paths that do not intersect G (hence
impossible to avoid by placing fences from G).

In the following, we assume Target unreachable if all fences from G are inserted,
and say that a set of fences is complete if it suffices to ensure Target unreachable
under TSO. We say that a set is incomplete otherwise. We show the following invariant
to hold for the while loop. At each iteration, i) all sets in W ∪C are subsets of G, ii)
each set in FG

min (P)(Target) has a subset in W ∪C , and iii) the set W ∪C is minimal
with respect to the subset relation (i.e., Fi 6⊆ Fj for all Fi,Fj in W ∪C ). Observe that
this suffices, taking into account that C only contains complete sets of fence, for partial
correctness as W = /0 implies C = FG

min (P)(Target).
The statement holds at the loop entrance as C is empty and W contains the empty

set. Suppose the statement holds at the beginning of some iteration, we show it is pre-
served by the iteration. New sets are obtained by adding a fence from FB to a set from
W . Both are subsets of G, and hence all manipulated sets in the algorithm are subsets
of G. If a set of fences is added to C at line 14, then it is complete (as it reached line 13)
and the addition preserves minimality of W ∪C as we just moved F from W to C . We



show in the following that each minimal set of fences has a subset in W ∪C . Suppose
the set F picked at line 4 is not subset to a minimal set. The set F will not eliminate sets
from W or C , and the statement holds after the loop iteration. Otherwise, F is subset
of a number of minimal sets or a minimal set itself. If it is a minimal set and it does not
already belong to C , it will pass the test at line 13 as C only contains complete sets. If
it is a strict subset to minimal sets F1, . . . ,Fn, then there should be a (possibly identical)
representative in FB from each set Fi \F , as otherwise the trace δ is possible even in
P⊕Fi; implying Fi is not complete, which contradicts Fi being a minimal fence set.
This means that each of the minimal sets F1, . . . ,Fn will have a (possibly shared) subset
among those F ′ generated at line 10. If one of the F ′ is discarded at line 11, then the
corresponding Fi has another subset already in W ∪C (namely the one that discarded
F ′). Hence, in all cases the statement is preserved which shows partial correctness. ut


