
A Novel Learning Algorithm for Büchi Automata
based on Family of DFAs and Classification Trees

Yong Li1,2, Yu-Fang Chen3, Lijun Zhang1,2, Depeng Liu1,2

1 State Key Laboratory of Computer Science, Institute of Software, CAS
2 University of Chinese Academy of Sciences

3 Institute of Information Science, Academia Sinica

Abstract. In this paper, we propose a novel algorithm to learn a Büchi automa-
ton from a teacher who knows an !-regular language. The algorithm is based on
learning a formalism named family of DFAs (FDFAs) recently proposed by An-
gluin and Fisman [10]. The main catch is that we use a classification tree structure
instead of the standard observation table structure. The worst case storage space
required by our algorithm is quadratically better than the table-based algorithm
proposed in [10]. We implement the first publicly available library ROLL (Reg-
ular Omega Language Learning), which consists of all !-regular learning algo-
rithms available in the literature and the new algorithms proposed in this paper.
Experimental results show that our tree-based algorithms have the best perfor-
mance among others regarding the number of solved learning tasks.

1 Introduction

Since the last decade, learning-based automata inference techniques [7,11,30,35] have
received significant attention from the community of formal system analysis. In general,
the primary applications of automata learning in the community can be categorized into
two: improving e�ciency and scalability of verification [6,15,17,19,21,23,25,32] and
synthesizing abstract system model for further analysis [1,5,16,18,22,24,26,34,36,39].

The former usually is based on the so called assume-guarantee compositional veri-
fication approach, which divides a verification task into several subtasks via a compo-
sition rule. Learning algorithms are applied to construct environmental assumptions of
components in the rule automatically. For the latter, automata learning has been used to
automatically generate interface model of computer programs [5,22,26,36,40], a mod-
el of system error traces for diagnosis purpose [16], behavior model of programs for
statistical program analysis [18], and model-based testing and verification [24, 34, 39].

Besides the classical finite automata learning algorithms, people also apply and de-
velop learning algorithm for richer models for the above two applications. For example,
learning algorithms for register automata [27, 28] have been developed and applied to
synthesis system and program interface models. Learning algorithm for timed automata
has been developed for automated compositional verification for timed systems [32].
However, all the results mentioned above are for checking safety properties or synthe-
sizing finite behavior models of systems/programs. Büchi automaton is the standard
model for describing liveness properties of distributed systems [4]. The model has been

applied in automata theoretical model checking [38] to describe the property to be veri-
fied. It is also often used in the synthesis of reactive systems. Moreover, Büchi automata
have been used as a mean to prove program termination [31]. However, unlike the case
for finite automata learning, learning algorithms for Büchi automata are very rarely used
in our community. We believe this is a potentially fertile area for further investigation.

The first learning algorithm for the full-class of !-regular languages represented
as Büchi automata was described in [20], based on the L⇤ algorithm [7] and the result
of [14]. Recently, Angluin and Fisman propose a new learning algorithm for !-regular
languages [10] using a formalism called a family of DFAs (FDFAs), based on the results
of [33]. The main problem of applying their algorithm in verification and synthesis is
that their algorithm requires a teacher for FDFAs. In this paper, we show that their
algorithm can be adapted to support Büchi automata teachers.

We propose a novel !-regular learning algorithm based on FDFAs and a classifi-
cation tree structure (inspired by the tree-based L⇤ algorithm in [30]). The worst case
storage space required by our algorithm is quadratically better than the table-based al-
gorithm proposed in [10]. Experimental results show that our tree-based algorithms
have the best performance among others regarding the number of solved learning tasks.

For regular language learning, there are robust and publicly available libraries, e.g.,
libalf [12] and LearnLib [29]. A similar library is still lacking for Büchi automata
learning. We implement the first publicly available Büchi automata learning library,
named ROLL (Regular Omega Language Learning, http://iscasmc.ios.ac.cn/
roll), which includes all Büchi automata learning algorithms of the full class of !-
regular languages available in the literature and the ones proposed in this paper. We
compare the performance of those algorithms using a benchmark consists of 295 Büchi
automata corresponding to all 295 LTL specifications available in BüchiStore [37].

To summarize, our contribution includes the following. (1) Adapting the algorithm
of [10] to support Büchi automata teachers. (2) A novel learning algorithm for!-regular
language based on FDFAs and classification trees. (3) The publicly available library
ROLL that includes all Büchi automata learning algorithms can be found in the litera-
ture. (4) A comprehensive empirical evaluation of Büchi automata learning algorithms.

2 Preliminaries

Let A and B be two sets. We use A � B to denote their symmetric di↵erence, i.e., the set
(A \ B) [(B \ A). Let ⌃ be a finite set called alphabet. We use ✏ to represent an empty
word. The set of all finite words is denoted by ⌃⇤, and the set of all infinite words, called
!-words, is denoted by ⌃!. Moreover, we also denote by ⌃+ the set ⌃⇤ \ {✏}. We use |u|
to denote the length of the finite word u. We use [i · · · j] to denote the set {i, i+1, · · · , j}.
We denote by w[i] the i-th letter of a word w. We use w[i..k] to denote the subword of
w starting at the i-th letter and ending at the k-th letter, inclusive, when i k and the
empty word ✏ when i > k. A language is a subset of ⌃⇤ and an !-language is a subset
of ⌃!. Words of the form uv! are called ultimately periodic words. We use a pair of
finite words (u, v) to denote the ultimately periodic word w = uv!. We also call (u, v) a
decomposition of w. For an !-language L, let UP(L) = {uv! | u 2 ⌃⇤, v 2 ⌃+, uv! 2 L},
i.e., all ultimately periodic words in L.

A finite automaton (FA) is a tuple A = (⌃,Q, q0, F, �) consisting of a finite alphabet
⌃, a finite set Q of states, an initial state q0, a set F ✓ Q of accepting states, and a
transition relation � ✓ Q ⇥ ⌃ ⇥ Q. For convenience, we also use �(q, a) to denote the
set {q0 | (q, a, q0) 2 �}. A run of an FA on a finite word v = a1a2a3 · · · an is a sequence
of states q0, q1, · · · , qn such that (qi, ai+1, qi+1) 2 �. The run v is accepting if qn 2 F.
A word u is accepting if it has an accepting run. The language of A, denoted by L(A),
is the set {u 2 ⌃⇤ | u is accepted by A}. Given two FAs A and B, one can construct a
product FA A ⇥ B recognizing L(A) \ L(B) using a standard product construction.

A deterministic finite automaton (DFA) is an FA such that �(q, a) is a singleton for
any q 2 Q and a 2 ⌃. For DFA, we write �(q, a) = q0 instead of �(q, a) = {q0}. The
transition can be lifted to words by defining �(q, ✏) = q and �(q, av) = �(�(q, a), v) for
q 2 Q, a 2 ⌃ and v 2 ⌃⇤. We also use A(v) as a shorthand for �(q0, v).

A Büchi automaton (BA) has the same structure as an FA, except that it accepts only
infinite words. A run of an infinite word in a BA is an infinite sequence of states defined
similarly to the case of a finite word in an FA. An infinite word w is accepted by a BA
i↵ it has a run visiting at least one accepting state infinitely often. The language defined
by a BA A, denoted by L(A), is the set {w 2 ⌃! | w is accepted by A}. An !-language
L ✓ ⌃! is !-regular i↵ there exists a BA A such that L = L(A).

Theorem 1 (Ultimately Periodic Words of !-Regular Languages [13]). Let L, L0 be
two !-regular languages. Then L = L0 if and only if UP(L) = UP(L0).

Definition 1 (Family of DFAs (FDFA) [10]). A family of DFAs F = (M, {Aq}) over
an alphabet ⌃ consists of a leading automaton M = (⌃,Q, q0, �) and progress DFAs
Aq = (⌃,Qq, sq, �q, Fq) for each q 2 Q.

Notice that the leading automaton M is a DFA without accepting states. Each FDFA
F characterizes a set of ultimately periodic words UP(F). Formally, an ultimately pe-
riodic word w is in UP(F) i↵ it has a decomposition (u, v) accepted by F . A decom-
position (u, v) is accepted by F i↵ M(uv) = M(u) and v 2 L(AM(u)). An example of
an FDFA F is depicted in Fig. 1. The leading automaton M has only one state ✏. The
progress automaton of ✏ is A✏ . The word (ba)! is in UP(F) because it has a decomposi-
tion (ba, ba) such that M(ba · ba) = M(ba) and ba 2 L(AM(ba)) = L(A✏). It is easy to see
that the decomposition (bab, ab) is not accepted by F since ab < L(AM(bab)) = L(A✏).

✏start

M a

b

✏start a

A✏

a, b
a

b

Fig. 1. An example of an FDFA

For any !-regular language L, there
exists an FDFA F such that UP(L) =
UP(F) [10]. We show in Sec. 6 that it
is not the case for the reverse direction.
More precisely, in [10], three kinds of
FDFAs are suggested as the canonical
representation of !-regular languages,
namely periodic FDFA, syntactic FDFA

and recurrent FDFA. Their formal definitions are given in terms of right congruence.
An equivalence relation v on ⌃⇤ is a right congruence if x v y implies xv v yv for

every x, y, v 2 ⌃⇤. The index of v, denoted by |v|, is the number of equivalence classes
of v. We use ⌃⇤/v to denote the equivalence classes of the right congruence v. A finite
right congruence is a right congruence with a finite index. For a word v 2 ⌃⇤, we use

the notation [v]v to represent the class of v in which v resides and ignore the subscript
v when the context is clear. The right congruence vL of a given !-regular language L
is defined such that x vL y i↵ 8w 2 ⌃!.xw 2 L () yw 2 L. The index of vL is finite
because it is not larger than the number of states in a deterministic Muller automaton
recognizing L [33].

Definition 2 (Canonical FDFA [10]). Given an !-regular language L. A periodic (re-
spectively, syntactic and recurrent) FDFA F = (M, {Aq}) of L is defined as follows.
The leading automaton M is the tuple (⌃,⌃⇤/vL , [✏]vL , �), where �([u]vL , a) = [ua]vL for
all u 2 ⌃⇤ and a 2 ⌃.

We define the right congruences ⇡u
P,⇡u

S , and ⇡u
R for progress automata Au of peri-

odic, syntactic, and recurrent FDFA respectively as follows:

x ⇡u
P y i↵ 8v 2 ⌃⇤, u(xv)! 2 L() u(yv)! 2 L,

x ⇡u
S y i↵ ux vL uy and 8v 2 ⌃⇤, uxv vL u =) (u(xv)! 2 L() u(yv)! 2 L), and

x ⇡u
R y i↵ 8v 2 ⌃⇤, uxv vL u ^ u(xv)! 2 L() uyv vL u ^ u(yv)! 2 L.

The progress automaton Au is the tuple (⌃,⌃⇤/⇡u
K
, [✏]⇡u

K
, �K , FK), where �K([u]⇡u

K
, a) =

[ua]⇡u
K

for all u 2 ⌃⇤ and a 2 ⌃. The accepting states FK is the set of equivalence
classes [v]⇡u

K
for which uv vL u and uv! 2 L when K 2 {S ,R} and the set of equivalence

classes [v]⇡u
K

for which uv! 2 L when K 2 {P}.
In this paper, by an abuse of notation, we use a finite word u to denote the state in a
DFA in which the equivalence class [u] resides.

Lemma 1 ([10]). Let F be a periodic (syntactic, recurrent) FDFA of an !-regular
language L. Then UP(F) = UP(L).

Lemma 2 ([9]). Let F be a periodic (syntactic, recurrent) FDFA of an !-regular lan-
guage L. One can construct a BA recognizing L from F .

3 Büchi Automata Learning Framework based on FDFA

We begin with an introduction of the framework of learning BA recognizing an un-
known !-regular language L.

Overview of the framework: First, we assume that we already have a BA teacher who
knows the unknown !-regular language L and answers membership and equivalence
queries about L. More precisely, a membership query MemBA(uv!) asks if uv! 2 L.
For an equivalence query EquBA(B), the BA teacher answers “yes” when L(B) = L,
otherwise it returns “no” as well as a counterexample uv! 2 L � L(B).

The framework depicted in Fig. 2 consists of two components, namely the FDFA
learner and the FDFA teacher. Note that one can place any FDFA learning algorithm
to the FDFA learner component. For instance, one can use the FDFA learner from [10]
which employs a table to store query results, or the FDFA learner using a classification
tree proposed in this paper. The FDFA teacher can be any teacher who can answer
membership and equivalence queries about an unknown FDFA.

M
em

ber
Equivalence

FDFA learner FDFA teacher

BA
teacher

Table-based [10]
(Sec.4)

Tree-based (Sec. 5)
– Periodic FDFA
– Syntactic FDFA
– Recurrent FDFA

FDFA F to BA B (Sec. 6)
– Under-Approximation B
– Over-Approximation B

Analyze CE (Sec. 7)
– Under-Approximation B
– Over-Approximation B

F

MemFDFA(u, v) MemBA(uv!)

yes/no

EquFDFA(F) EquBA(B)

yes

Output a BA recognizing the target language

no + uv!no +(u0, v0)

Fig. 2. Overview of the learning framework based on FDFA learning. The components in
boxes are results from existing works. The components in boxes are our new contributions.

FDFA learners: The FDFA learners component will be introduced in Sec. 4 and 5.
We first briefly review the table-based FDFA learning algorithms [10] in Sec. 4. Our
tree-based learning algorithm for canonical FDFAs will be introduced in Sec. 5. The al-
gorithm is inspired by the tree-based L⇤ learning algorithm [30]. Nevertheless, applying
the tree structure to learn FDFAs is not a trivial task. For example, instead of a binary
tree used in [30], we need to use a K-ary tree to learn syntactic FDFAs. The use of
K-ary tree complicates the procedure of refining the classification tree and automaton
construction. More details will be provided in Sec. 5.

FDFA teacher: The task of the FDFA teacher is to answer queries MemFDFA(u, v) and
EquFDFA(F) posed by the FDFA learner. Answering MemFDFA(u, v) is easy. The FDFA
teacher just needs to redirect the result of MemBA(uv!) to the FDFA learner. Answering
equivalence query EquFDFA(F) is more tricky.

From an FDFA F to a BA B: The FDFA teacher needs to transform an FDFA F to a
BA B to pose an equivalence query EquBA(B). In Sec. 6, we show that, in general, it
is impossible to build a BA B from an FDFA F such that UP(L(B)) = UP(F). There-
fore in Sec. 6, we propose two methods to approximate UP(F), namely the under-
approximation method and the over-approximation method. As the name indicates,
the under-approximation (respectively, over-approximation) method constructs a BA
B from F such that UP(L(B)) ✓ UP(F) (respectively, UP(F) ✓ UP(L(B))). The under-
approximation method is modified from the algorithm in [14]. Note that if the FDFAs
are the canonical representations, the BAs built by the under-approximation method
recognize the same ultimately periodic words as the FDFAs, which makes it a complete

method for BA learning (Lem. 1 and 2). As for the over-approximation method, we can-
not guarantee to get a BA B such that UP(L(B)) = UP(F) even if the F is a canonical
representation, which thus makes it an incomplete method. However, in the worst case,
the over-approximation method produces a BA whose number of states is only quadrat-
ic in the size of the FDFA. In contrast, the number of states in the BA constructed by
the under-approximation method is cubic in the size of the FDFA.

Counterexample analysis: If the FDFA teacher receives “no” and a counterexample uv!

from the BA teacher, the FDFA teacher has to return “no” as well as a valid decom-
position (u0, v0) that can be used by the FDFA learner to refine F. In Sec. 7, we show
how the FDFA teacher chooses a pair (u0, v0) from uv! that allows FDFA learner to re-
fine current FDFA F. As the dashed line with a label F in Fig. 2 indicates, we use the
current conjectured FDFA F to analyze the counterexample. The under-approximation
method and the over-approximation method of FDFA to BA translation require di↵erent
counterexample analysis procedures. More details will be provided in Sec. 7.

Once the BA teacher answers “yes” for the equivalence query EquBA(B), the FDFA
teacher will terminate the learning procedure and outputs a BA recognizing L.

4 Table-based Learning Algorithm for FDFAs

In this section, we briefly introduce the table-based learner for FDFAs [10]. It employs
a structure called observation table [7] to organize the results obtained from queries and
propose candidate FDFAs. The table-based FDFA learner simultaneously runs several
instances of DFA learners. The DFA learners are very similar to the L⇤ algorithm [7],
except that they use di↵erent conditions to decide if two strings belong to the same state
(based on Def. 2). More precisely, the FDFA learner uses one DFA learner L⇤M for the
leading automaton M, and for each state u in M, one DFA learner L⇤Au for each progress
automaton Au. The table-based learning procedure works as follows. The learner L⇤M
first closes the observation table by posing membership queries and then constructs a
candidate for leading automaton M. For every state u in M, the table-based algorithm
runs an instance of DFA learner L⇤Au to find the progress automaton Au. When all D-
FA learners propose candidate DFAs, the FDFA learner assembles them to an FDFA
F = (M, {Au}) and then poses an equivalence query for it. The FDFA teacher will ei-
ther return “yes” which means the learning algorithm succeeds or return “no” accom-
panying with a counterexample. Once receiving the counterexample, the table-based
algorithm will decide which DFA learner should refine its candidate DFA. We refer
interested readers to [10] for more details of the table-based algorithm.

5 Tree-based Learning Algorithm for FDFAs

In this section, we provide our tree-based learning algorithm for FDFAs. To that end,
we first define the classification tree structure for FDFA learning in Sec. 5.1 and present
the tree-based algorithm in Sec. 5.2.

5.1 Classification Tree Structure in Learning

Here we present our classification tree structure for FDFA learning. Compared to the
classification tree defined in [30], ours is not restricted to be a binary tree. Formally,
a classification tree is a tuple T = (N, r, Ln, Le) where N = I [T is a set of nodes
consisting of the set I of internal nodes and the set T of terminal nodes, the node r 2 N
is the root of the tree, Ln : N ! ⌃⇤[(⌃⇤⇥⌃⇤) labels an internal node with an experiment
and a terminal node with a state, and Le : N ⇥ D ! N maps a parent node and a label
to its corresponding child node, where the set of labels D will be specified below.

During the learning procedure, we maintain a leading tree T for the leading au-
tomaton M, and for every state u in M, we keep a progress tree Tu for the progress
automaton Au. For every classification tree, we define a tree experiment function TE :
⌃⇤ ⇥ (⌃⇤ [(⌃⇤ ⇥⌃⇤))! D. Intuitively, TE(x, e) computes the entry value at row (state)
x and column (experiment) e of an observation table in table-based learning algorithms.
The labels of nodes in the classification tree T satisfy the follow invariants: Let t 2 T
be a terminal node labeled with a state x = Ln(t). Let t0 2 I be an ancestor node of t
labeled with an experiment e = Ln(t0). Then the child of t0 following the label TE(x, e),
i.e., Le(t0,TE(x, e)), is either the node t or an ancestor node of t.

Leading tree T : The leading tree T for M is a binary tree with labels D = {F,T}.
The tree experiment function TE(u, (x, y)) = T i↵ uxy! 2 L (recall the definition of
vL in Sec. 2) where u, x, y 2 ⌃⇤. Intuitively, each internal node n in T is labeled by an
experiment xy! represented as (x, y). For any word u 2 ⌃⇤, uxy! 2 L (or uxy! < L)
implies that the equivalence class of u lies in the T-subtree (or F-subtree) of n.

Progress tree Tu: The progress trees Tu and the corresponding function TE(x, e) are
defined based on the right congruences ⇡u

P, ⇡u
S , and ⇡u

R of canonical FDFAs in Def. 2.
Periodic FDFA: The progress tree for periodic FDFA is also a binary tree labeled with
D = {F,T}. The experiment function TE(x, e) = T i↵ u(xe)! 2 L where x, e 2 ⌃⇤.
Syntactic FDFA: The progress tree for syntactic FDFA is a K-ary tree with labels D =
Q ⇥ {A,B,C} where Q is the set of states in the leading automaton M. For all x, e 2 ⌃⇤,
the experiment function TE(x, e) = (M(ux), t), where t = A i↵ u = M(uxe)^u(xe)! 2 L,
t = B i↵ u = M(uxe) ^ u(xe)! < L, and t = C i↵ u , M(uxe).

For example, assuming that M is constructed from the right congruence vL, for
any two states x and y such that TE(x, e) = TE(y, e) = (z, A), it must be the case that
ux vL uy because M(ux) = z = M(uy). Moreover, the experiment e cannot distinguish
x and y because uxe vL u vL uye and both u(xe)!, u(ye)! 2 L.
Recurrent FDFA: The progress tree for recurrent FDFA is a binary tree labeled with
D = {F,T}. The function TE(x, e) = T i↵ u(xe)! 2 L ^ u = M(uxe) where x, e 2 ⌃⇤.

5.2 Tree-based Learning Algorithm

The tree-based learning algorithm first initializes the leading tree T and the progress
tree T✏ as a tree with only one terminal node r labeled by ✏.

From a classification tree T = (N, r, Ln, Le), the learner constructs a candidate of
a leading automaton M = (⌃,Q, ✏, �) or a progress automaton Au = (⌃,Q, ✏, �, F)
as follow. The set of states is Q = {Ln(t) | t 2 T }. The transition function �(s, a) is
constructed by the following procedure. Initially the current node n := r. If n is a ter-
minal node, it returns �(s, a) = Ln(n). Otherwise, it picks a unique child n0 of n with
Le(n,TE(sa, Ln(n))) = n0, updates the current node to n0, and repeats the procedure4. By
Def. 2, the set of accepting states F of a progress automaton can be identified from the
structure of M with the help of membership queries. For periodic FDFA, F = {v | uv! 2
L, v 2 Q} and for syntactic and recurrent FDFA, F = {v | uv vM u, uv! 2 L, v 2 Q}.

Whenever the learner has constructed an FDFA F = (M, {Au}), it will pose an
equivalence query for F . If the teacher returns “no” and a counterexample (u, v), the
learner has to refine the classification tree and propose another candidate of FDFA.

Definition 3 (Counterexample for FDFA Learner). Given the conjectured FDFA F
and the target language L, we say that the counterexample

– (u, v) is positive if uv vM u, uv! 2 UP(L), and (u, v) is not accepted by F ,
– (u, v) is negative if uv vM u, uv! < UP(L), and (u, v) is accepted by F .

We remark that in our case all counterexamples (u, v) from the FDFA teacher satisfy
the constraint uv vM u, which corresponds to the normalized factorization form in [10].

Counterexample guided refinement of F : Below we show how to refine the classi-
fication trees based on a negative counterexample (u, v). The case of a positive coun-
terexample is symmetric. By definition, we have uv ⇠M u, uv! < UP(L) and (u, v) is
accepted by F . Let ũ = M(u), if ũv! 2 UP(L), the refinement of the leading tree is
performed, otherwise ũv! < UP(L), the refinement of the progress tree is performed.

Refinement for the leading tree: In the leading automaton M of the conjectured
FDFA, if a state p has a transition to a state q via a letter a, i.e, q = M(pa), then
pa has been assigned to the terminal node labeled by q during the construction of M.
If one also finds an experiment e such that TE(q, e) , TE(pa, e), then we know that q
and pa should not belong to the same state in a leading automaton. W.l.o.g., we assume
TE(q, e) = F. In such a case, the leading tree can be refined by replacing the terminal
node labeled with q by a tree such that (i) its root is labeled by e, (ii) its left child is a
terminal node labeled by q, and (iii) its right child is a terminal node labeled by pa.

Below we discuss how to extract the required states p, q and experiment e. Let |u| =
n and s0s1 · · · sn be the run of u over M. Note that s0 = M(✏) = ✏ and sn = M(u) = ũ.
From the facts that (u, v) is a negative counterexample and ũv! 2 UP(L) (the condition
to refine the leading tree), we have TE(s0, (u[1 · · · n], v)) = F , T = TE(sn, (✏, v)) =
TE(sn, (u[n + 1 · · · n], v)) because uv! < UP(L) and ũv! 2 UP(L). Recall that we have
w[j · · · k] = ✏ when j > k. Therefore, there must exist a smallest j 2 [1 · · · n] such
that TE(s j�1, (u[j · · · n], v)) , TE(s j, (u[j + 1 · · · n], v)). It follows that we can use the
experiment e = (u[j + 1 · · · n], v) to distinguish q = s j and pa = s j�1u[j].

4 For syntactic FDFA, it can happen that �(s, a) goes to a “new” terminal node. A new state for
the FDFA is identified in such a case.

Example 1. Consider a conjectured FDFA F in Fig. 1 produced during the process of
learning L = a! + b!. The corresponding leading tree T and the progress tree T✏ are
depicted on the left of Fig. 3. The dotted line is for the F label and the solid one is for
the T label. Suppose the FDFA teacher returns a negative counterexample (ab, b). The
leading tree has to be refined since M(ab)b! = b! 2 L. We find an experiment (b, b)
to di↵erentiate ✏ and a using the procedure above and update the leading tree T to T 0.
The leading automaton M constructed from T 0 is depicted on the right of Fig. 3.

✏

T
✏

✏ a

T✏
CE (ab, b)

(b, b)

a ✏

T 0

✏start a

M

a

b

a

b

Fig. 3. Refinement of the leading tree and the corresponding leading automaton

Refinement for the progress tree: Here we explain the case of periodic FDFAs. The
other cases are similar and we leave the details in Appendix B. Recall that ũv! < UP(L)
and thus the algorithm refines the progress tree Tũ. Let |v| = n and h = s0s1 · · · sn be the
corresponding run of v over Aũ. Note that s0 = Aũ(✏) = ✏ and sn = Aũ(v) = ṽ. We have
ũ(ṽ)! 2 UP(L) because ṽ is an accepting state. From the facts that ũv! < UP(L) and
ũ(ṽ)! 2 UP(L), we have TE(s0, v[1 · · · n]) = F , T = TE(sn, ✏) = TE(sn, v[n+1 · · · n]).
Therefore, there must exist a smallest j 2 [1 · · · n] such that TE(s j�1, v[j · · · n]) ,
TE(s j, v[j + 1 · · · n]). It follows that we can use the experiment e = v[j + 1 · · · n] to
distinguish q = s j, pa = s j�1v[j] and refine the progress tree Tũ.

Optimization: Example 1 also illustrates the fact that the counterexample (ab, b) may
not be eliminated right away after the refinement. In this case, it is still a valid counterex-
ample (assuming that the progress tree T✏ remains unchanged). Thus as an optimization
in our tool, one can repeatedly use the counterexample until it is eliminated.

6 From FDFA to Büchi Automata

✏start
M a

b

✏start a

b

A✏
a

b

b

a
a b

Fig. 4. An FDFA F such that UP(F) does
not characterize an !-regular language

Since the FDFA teacher exploits the BA
teacher for answering equivalence queries, it
needs first to convert the given FDFA into a
BA. Unfortunately, with the following exam-
ple, we show that in general, it is impossible
to construct a precise BA B for an FDFA F
such that UP(L(B)) = UP(F).

Example 2. Consider a non-canonical FDFA
F in Fig. 4, we have UP(F) =

S1
n=0{a, b}⇤ ·

(abn)!. We assume that UP(F) characterizes an !-regular language L. It is known that
the periodic FDFA recognizes exactly the !-regular language and the index of each
right congruence is finite [10]. However, we can show that the right congruence ⇡✏P of

a periodic FDFA of L is of infinite index. Observe that abk 6⇡✏P ab j for any k, j � 1 and
k , j, because ✏ · (abk ·abk)! 2 UP(F) and ✏ · (ab j ·abk)! < UP(F). It follows that ⇡✏P is
of infinite index. We conclude that UP(F) cannot characterize an !-regular language.

We circumvent the above problem by proposing two BAs B, B, which under- and
over-approximate the ultimately periodic words of an FDFA. Given an FDFA F =
(M, {Au}) with M = (⌃,Q, q0, �) and Au = (⌃,Qu, su, �u, Fu) for all u 2 Q, we define
Ms

v = (⌃,Q, s, �, {v}) and (Au)s
v = (⌃,Qu, s, �u, {v}), i.e., the DFA obtained from M

and Au by setting their initial and accepting states as s and {v}, respectively. Define
N(u,v) = {v! | uv vM u ^ v 2 L((Au)su

v)}. Then UP(F) =
S

u2Q,v2Fu
L(Mq0

u) · N(u,v).
We construct B and B by approximating the set N(u,v). For B, we first define an FA

P(u,v) = (⌃,Qu,v, su,v, { fu,v}, �u,v) = Mu
u ⇥ (Au)su

v and let N(u,v) = L(P(u,v))!. Then one can
construct a BA (⌃,Qu,v [{ f }, su,v, { f }, �u,v [� f) recognizing N(u,v) where f is a “fresh”
state and � f = {(f , ✏, su,v), (fu,v, ✏, f)}. For B, we define an FA P(u,v) = Mu

u⇥(Au)su
v ⇥(Au)v

v
and let N(u,v) = L(P(u,v))

!. One can construct a BA recognizing N(u,v) using a similar
construction to the case of N(u,v). In Def. 4 we show how to construct BAs B and B s.t.
UP(L(B)) =

S
u2Q,v2Fu

L(Mq0
u) · N(u,v) and UP(L(B)) =

S
u2Q,v2Fu

L(Mq0
u) · N(u,v).

Definition 4. Let F = (M, {Au}) be an FDFA where M = (⌃,Q, q0, �) and Au =
(⌃,Qu, su, Fu, �u) for every u 2 Q. Let (⌃,Qu,v, su,v, { fu,v}, �u,v) be a BA recognizing
N(u,v) (respectively N(u,v)). Then the BA B (respectively B) is defined as the tuple

0
BBBBBB@⌃,Q [

[

u2Q,v2Fu

Qu,v, q0,
[

u2Q,v2Fu

{ fu,v}, � [
[

u2Q,v2Fu

�u,v [
[

u2Q,v2Fu

{(u, ✏, su,v)}
1
CCCCCCA .

Lemma 3 (Sizes and Languages of B and B). Let F be an FDFA and B, B be the
BAs constructed from F by Def. 4. Let n and k be the numbers of states in the leading
automaton and the largest progress automaton of F . The number of states of B and B
are in O(n2k3) and O(n2k2), respectively. Moreover, UP(L(B)) ✓ UP(F) ✓ UP(L(B))
and we have UP(L(B)) = UP(F) when F is a canonical FDFA.

The properties below will be used later in analyzing counterexamples.

Lemma 4. Given an FDFA F = (M, {Au}), and B the BA constructed from F by Def. 4.
If (u, vk) is accepted by F for every k � 1, then uv! 2 UP(L(B)).

Lemma 5. Given an !-word w 2 UP(L(B)), there exists a decomposition (u, v) of w
and n � 1 such that v = v1 · v2 · · · vn and for all i 2 [1 · · · n], vi 2 L(AM(u)) and uvi vM u.

Fig. 5 depicts the BAs B and B constructed from the FDFA F in Fig. 1. In the
example, we can see that the b! 2 UP(F) while b! < UP(L(B)).

q0start q1 q2

q02

B
a

b

✏ a, b

a

b
✏

✏

q0start q1 q2

q3

q02

q4

B a

b

✏ a

b

a

b

✏

a
b

a,b

✏

Fig. 5. NBA B and B for F in Fig. 1

7 Counterexample Analysis for FDFA Teacher

During the learning procedure, if we failed the equivalence query for the BA B, the BA
teacher will return a counterexample uv! to the FDFA teacher.

Definition 5 (Counterexample for the FDFA Teacher). Given the conjectured BA
B 2 {B, B}, the target language L, we say that

– uv! is a positive counterexample if uv! 2 UP(L) and uv! < UP(L(B)),
– uv! is a negative counterexample if uv! < UP(L) and uv! 2 UP(L(B)).

Obviously, the above is di↵erent to the counterexample for the FDFA learner in
Def. 3. Below we illustrate the necessity of the counterexample analysis by an example.

Example 3. Again, consider the conjectured FDFAF depicted in Fig. 1 for L = a!+b!.
Suppose the BA teacher returns a negative counterexample (ba)!. In order to remove
(ba)! 2 UP(F), one has to find a decomposition of (ba)! that F accepts, which is the
goal of the counterexample analysis. Not all decompositions of (ba)! are accepted by
F . For instance, (ba, ba) is accepted while (bab, ab) is not.

A positive (respectively negative) counterexample uv! for the FDFA teacher is
spurious if uv! 2 UP(F) (respectively uv! < UP(F)). Suppose we use the under-
approximation method to construct the BA B from F depicted in Fig. 5. The BA teacher
returns a spurious positive counterexample b!, which is in UP(F) but not in UP(L(B)).
We show later that in such a case, one can always find a decomposition, in this example
(b, bb), as the counterexample for the FDFA learner.

Given FDFA F = (M, {Au}), in order to analyze the counterexample uv! , we define:

– an FADu$v with L(Du$v) = {u0$v0 | u0 2 ⌃⇤, v0 2 ⌃+, uv! = u0v0!},
– an FAD1 with L(D1) = {u$v | u 2 ⌃⇤, v 2 ⌃⇤, uv vM u, v 2 L(AM(u))}, and
– an FAD2 with L(D2) = {u$v | u 2 ⌃⇤, v 2 ⌃⇤, uv vM u, v < L(AM(u))}.

Here $ is a letter not in ⌃. Intuitively,Du$v accepts every possible decomposition (u0, v0)
of uv!, D1 recognizes every decomposition (u0, v0) which is accepted by F and D2
accepts every decomposition (u0, v0) which is not accepted by F yet u0v0 vM u0.

Given a BA B constructed by the under-approximation method to construct a BA
B from F , we have that UP(L(B)) ✓ UP(F). Fig. 6(a) depicts all possible cases of
uv! 2 UP(L(B)) � UP(L).

LB

F

uv!

uv! uv!

(a) Under-Approximation

LF
B

uv!

uv!

uv!

(b) Over-Approximation

Fig. 6. The Case for Counterexample Analysis

U1 : uv! 2 UP(L)^uv! < UP(F) (Point in red). The word uv! is a positive counterex-
ample, one has to find a decomposition (u0, v0) such that u0v0 vM u0 and u0v0! = uv!.
This can be easily done by taking a word u0$v0 2 L(Du$v) \ L(D2).

U2 : uv! < UP(L) ^ uv! 2 UP(F) (Point in blue). The word uv! is a negative coun-
terexample, one needs to find a decomposition (u0, v0) of uv! that is accepted by F .
This can be done by taking a word u0$v0 2 L(Du$v) \ L(D1).

U3 : uv! 2 UP(L) ^ uv! 2 UP(F) (Point in green). The word uv! is a spurious
positive counterexample. Suppose the decomposition (u, v) of uv! is accepted by
F , according to Lem. 4, there must exist some k � 1 such that (u, vk) is not accepted
byF . Thus, we can also use the same method in U1 to get a counterexample (u0, v0).

We can also use the over-approximation construction to get a BA B from F such
that UP(F) ✓ UP(L(B)), and all possible cases for a counterexample uv! 2 UP(L(B))�
UP(L) is depicted in Fig. 6(b).

O1 : uv! 2 UP(L)^uv! < UP(F) (Point in red). The word uv! is a positive counterex-
ample that can be dealt with the same method for case U1.

O2 : uv! < UP(L) ^ uv! 2 UP(F) (Point in green). The word uv! is a negative
counterexample that can be dealt with the same method for case U2.

O3 : uv! < UP(L) ^ uv! < UP(F) (Point in blue). In this case, uv! is a spurious
negative counterexample. In such a case it is possible that we cannot find a valid
decomposition of uv! to refine F . By Lem. 5, we can find a decomposition (u0, v0)
of uv! such that v0 = v1v2 · · · vn, u0vi vM u0, and vi 2 L(AM(u0)) for some n � 1.
It follows that (u0, vi) is accepted by F . If we find some i 2 [1 · · · n] such that
u0v!i < UP(L), then we return (u0, vi), otherwise, the algorithm aborts with an error.

Finally, we note that determining whether uv! 2 UP(L) can be done by posing a
membership query MemBA(uv!), and checking whether uv! 2 UP(F) boils down to
checking the emptiness of L(Du$v) \ L(D1). The construction for Du$v, D1, and D2,
and the correctness proof of counterexample analysis are given in Appendix D.

8 Complexity

We discuss the complexity of tree-based FDFA learning algorithms in Sec. 5. Let F =
(M, {Au}) be the corresponding periodic FDFA of the !-regular language L, and let n

be the number of states in the leading automaton M and k be the number of states in
the largest progress automaton Au. We remark that F is uniquely defined for L and the
table-based algorithm needs the same amount of equivalence queries as the tree-based
one in the worst case. Given a counterexample (u, v) returned from the FDFA teacher,
we define its length as |u| + |v|.
Theorem 2 (Query Complexity). Let (u, v) be the longest counterexample returned
from the FDFA teacher. The number of equivalence queries needed for the tree-based
FDFA learning algorithm to learn the periodic FDFA of L is in O(n + nk), while the
number of membership queries is in O((n + nk) · (|u| + |v| + (n + k) · |⌃ |)).

For the syntactic and recurrent FDFAs, the number of equivalence queries need-
ed for the tree-based FDFA learning algorithm is in O(n + n3k), while the number of
membership queries is in O((n + n3k) · (|u| + |v| + (n + nk) · |⌃ |)).

The learning of syntactic and recurrent FDFAs requires more queries since once
their leading automata have been modified, they need to redo the learning of all progress
automata from scratch.

Theorem 3 (Space Complexity). For all tree-based algorithms, the space required to
learn the leading automaton is in O(n). For learning periodic FDFA, the space required
for each progress automaton is in O(k), while for syntactic and recurrent FDFAs, the
space required is in O(nk). For all table-based algorithms, the space required to learn
the leading automaton is in O((n + n · |⌃ |) · n). For learning periodic FDFA, the space
required for each progress automaton is in O((k + k · |⌃ |) · k), while for syntactic and
recurrent FDFAs, the space required is in O((nk + nk · |⌃ |) · nk).

Theorem 4 (Correctness and Termination). The BA learning algorithm based on
the under-approximation method can terminate and return a BA recognizing the un-
known !-regular language L in polynomial time. If the BA learning algorithm based on
the over-approximation method terminates without reporting an error, it returns a BA
recognizing L.

Given a canonical FDFA F , the under-approximation method produces a BA B such
that UP(F) = UP(L(B)), thus in the worst case, FDFA learner learns a canonical FDFA
and terminates. In practice, the algorithm very often finds a BA recognizing L before
converging to a canonical FDFA.

9 Experimental results

The ROLL library (http://iscasmc.ios.ac.cn/roll) is implemented in JAVA.
The DFA operations in ROLL are delegated to the dk.brics.automaton package, and
we use the RABIT tool [2, 3] to check the equivalence of two BAs. We evaluate the
performance of ROLL using the smallest BAs corresponding to all the 295 LTL specifi-
cations available in BüchiStore [37], where the numbers of states in the BAs range over
1 to 20 and transitions range over 0 to 100. The machine we used for the experiments is
a 2.5 GHz Intel Core i7-6500 with 4 GB RAM. We set the timeout period to 30 minutes.

Table 1. Overall experimental results. We show the results of 285 cases where all algorithms can
finish the BA learning within the timeout period and list the number of cases cannot be solved
(#Unsolved). The mark n⇤/m denotes that there are n cases terminate with an error (in the over-
approximation method) and it ran out of time for m � n cases. The rows #St., #Tr., #MQ, and
#EQ, are the numbers of states, transitions, membership queries, and equivalence queries. Timeeq

is the time spent in answering equivalence queries and Timetotal is the total execution time.

Models L$ LPeriodic LSyntactic LRecurrent

Struct.&
Approxi. Table Tree Table Tree Table Tree Table Tree

under over under over under over under over under over under over
#Unsolved 4 2 3 0/2 2 0/1 1 4*/5 0 3*/3 1 0/1 1 0/1
#St. 3078 3078 2481 2468 2526 2417 2591 2591 2274 2274 2382 2382 2400 2400
#Tr. 10.6k 10.3k 13.0k 13.0k 13.4k 12.8k 13.6k 13.6k 12.2k 12.2k 12.7k 12.7k 12.8k 12.8k
#MQ 105k 114k 86k 85k 69k 67k 236k 238k 139k 139k 124k 124k 126k 126k
#EQ 1281 2024 1382 1351 1950 1918 1399 1394 2805 2786 1430 1421 3037 3037
Timeeq(s) 146 817 580 92 186 159 111 115 89 91 149 149 462 465
Timetotal(s) 183 861 610 114 213 186 140 144 118 120 175 176 499 501
EQ(%) 79.8 94.9 95.1 80.7 87.3 85.5 79.3 79.9 75.4 75.8 85.1 84.6 92.6 92.8

The overall experimental results are given in Tab. 1. In this section, we use L$ to
denote the !-regular learning algorithm in [20], and LPeriodic, LSyntactic, and LRecurrent

to represent the periodic, syntactic, and recurrent FDFA learning algorithm introduced
in Sec. 4 and 5. From the table, we can find the following facts: (1) The BAs learned
from L$ have more states but fewer transitions than their FDFA based counterpart. (2)
LPeriodic uses fewer membership queries comparing to LSyntactic and LRecurrent. The rea-
son is that LSyntactic and LRecurrent need to restart the learning of all progress automata
from scratch when the leading automaton has been modified. (3) Tree-based algorithms
always solve more learning tasks than their table-based counterpart. In particular, the
tree-based LSyntactic with the under-approximation method solves all 295 learning tasks.

0 10 20 30 40 50

0

50

100

150

200

Number of Step

N
um

be
ro

fS
ta

te
s

L$ LPeriodic LSyntactic LRecurrent

Fig. 7. Growth of state counts in BA

In the experiment, we observe that table-
based L$ has 4 cases cannot be finished within
the timeout period, which is the largest number
amount all learning algorithms5. We found that
for these 4 cases, the average time required for L$

to get an equivalence query result is much longer
than the FDFA algorithms. Under scrutiny, we
found that the growth rate of the size (number
of states) of the conjectured BAs generated by
table-based L$ is much fast than that of table-
based FDFA learning algorithms. In Fig. 7, we
illustrate the growth rate of the size (number of

states) of the BAs generated by each table-based learning algorithm using one learning
task that cannot be solved by L$ within the timeout period. The figures of the other
three learning tasks show the same trend and hence are omitted. Another interesting

5 Most of the unsolved tasks using the over-approximation method are caused by the situation
that the FDFA teacher cannot find a valid counterexample for refinement.

observation is that the sizes of BAs generated by LSyntactic can decrease in some itera-
tion because the leading automaton is refined and thus the algorithms have to redo the
learning of all progress automata from scratch.

It is a bit surprise to us that, in our experiment, the size of BAs B produced by
the over-approximation method is not much smaller than the BAs B produced by the
under-approximation method. Recall that the progress automata of B comes from the
product of three DFAs Mu

u ⇥ (Au)su
v ⇥ (Au)v

v while those for B comes from the product
of only two DFAs Mu

u ⇥ (Au)su
v (Sec. 6). We found the reason is that very often the

language of the product of three DFAs is equivalent to the language of the product of
two DFAs, thus we get the same DFA after applying DFA minimizations. Nevertheless,
the over-approximation method is still helpful for LPeriodic and LRecurrent. For LPeriodic, the
over-approximation method solved more learning tasks than the under-approximation
method. For LRecurrent, the over-approximation method solved one tough learning task
that is not solved by the under-approximation method.

As we mentioned at the end of Sec. 5.2, a possible optimization is to reuse the
counterexample and to avoid equivalence query as much as possible. The optimization
helps the learning algorithms to solve nine more cases that were not solved before.

10 Discussion and Future works

Regarding our experiments, the BAs from LTL specifications are in general simple; the
average sizes of the learned BAs are around 10 states. From our experience of applying
DFA learning algorithms, the performance of tree-based algorithm is significantly bet-
ter than the table-based one when the number of states of the learned DFA is large, say
more than 1000. We believe this will also apply to the case of BA learning. Nevertheless,
in our current experiments, most of the time are spent in answering equivalence queries.
One possible direction to improve the scale of the experiment is to use a PAC (proba-
bly approximately correct) BA teacher [8] instead of an exact one, so the equivalence
queries can be answered faster because the BA equivalence testing will be replaced with
a bunch of BA membership testings.

There are several avenues for future works. We believe the algorithm and library
of learning BAs should be an interesting tool for the community because it enables the
possibility of many applications. For the next step, we will investigate the possibility of
applying BA learning to the problem of reactive system synthesis, which is known to
be a very di�cult problem and learning-based approach has not been tried yet.

There are learning algorithms for residual NFA [11], which is a more compact
canonical representation of regular languages than DFA. We think maybe one can also
generalize the learning algorithm for family of DFAs to family of residual NFAs (FRN-
FA). To do this, one needs to show FRNFAs also recognize !-regular language and
finds the corresponding right congruences.

References

1. F. Aarts, B. Jonsson, J. Uijen, and F. Vaandrager. Generating models of infinite-state com-
munication protocols using regular inference with abstraction. FMSD, 46(1):1–41, 2015.

2. P. A. Abdulla, Y.-F. Chen, L. Clemente, L. Holı́k, C. Hong, R. Mayr, and T. Vojnar. Simula-
tion Subsumption in Ramsey-Based Büchi Automata Universality and Inclusion Testing. In
CAV, pages 132–147, 2010.

3. P. A. Abdulla, Y.-F. Chen, L. Clemente, L. Holı́k, C. Hong, R. Mayr, and T. Vojnar. Advanced
Ramsey-Based Büchi Automata Inclusion Testing. In CONCUR, pages 187–202, 2011.

4. B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed computing,
2(3):117–126, 1987.

5. R. Alur, P. Černỳ, P. Madhusudan, and W. Nam. Synthesis of interface specifications for Java
classes. In POPL, pages 98–109, 2005.

6. R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by learning
assumptions. In CAV, pages 548–562, 2005.

7. D. Angluin. Learning Regular Sets from Queries and Counterexamples. Inf. Comput.,
75(2):87–106, 1987.

8. D. Angluin. Queries and Concept Learning. Mach. Learn., 2(4):319–342, Apr. 1988.
9. D. Angluin, U. Boker, and D. Fisman. Families of DFAs as Acceptors of omega-Regular

Languages. In MFCS, pages 11:1–11:14, 2016.
10. D. Angluin and D. Fisman. Learning Regular Omega Languages. In ALT, pages 125–139,

2014.
11. B. Bollig, P. Habermehl, C. Kern, and M. Leucker. Angluin-style Learning of NFA. In IJCAI,

pages 1004–1009, 2009.
12. B. Bollig, J.-P. Katoen, C. Kern, M. Leucker, D. Neider, and D. R. Piegdon. libalf: The

Automata Learning Framework. In CAV, pages 360–364, 2010.
13. J. R. Büchi. On a decision method in restricted second order arithmetic. volume 44, pages

1–11, 1966.
14. H. Calbrix, M. Nivat, and A. Podelski. Ultimately Periodic Words of Rational !-Languages.

In MFPS, pages 554–566, 1994.
15. S. Chaki, E. Clarke, N. Sinha, and P. Thati. Automated assume-guarantee reasoning for

simulation conformance. In CAV, pages 534–547, 2005.
16. M. Chapman, H. Chockler, P. Kesseli, D. Kroening, O. Strichman, and M. Tautschnig. Learn-

ing the Language of Error. In ATVA, pages 114–130, 2015.
17. Y.-F. Chen, A. Farzan, E. M. Clarke, Y.-K. Tsay, and B.-Y. Wang. Learning minimal sepa-

rating DFA’s for compositional verification. In TACAS, pages 31–45, 2009.
18. Y.-F. Chen, C. Hsieh, O. Lengál, T.-J. Lii, M.-H. Tsai, B.-Y. Wang, and F. Wang. PAC

Learning-based Verification and Model Synthesis. In ICSE, pages 714–724, 2016.
19. J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning assumptions for compo-

sitional verification. In TACAS, pages 331–346, 2003.
20. A. Farzan, Y.-F. Chen, E. M. Clarke, Y.-K. Tsay, and B.-Y. Wang. Extending Automated

Compositional Verification to the Full Class of Omega-Regular Languages. In TACAS, pages
2–17, 2008.

21. L. Feng, M. Kwiatkowska, and D. Parker. Automated learning of probabilistic assumptions
for compositional reasoning. In ICSE, pages 2–17, 2011.

22. D. Giannakopoulou, Z. Rakamarić, and V. Raman. Symbolic learning of component inter-
faces. In SAS, pages 248–264, 2012.

23. O. Grumberg and Y. Meller. Learning-Based Compositional Model Checking of Behavioral
UML Systems. Dependable Software Systems Engineering, 45:117, 2016.

24. A. Hagerer, H. Hungar, O. Niese, and B. Ste↵en. Model generation by moderated regular
extrapolation. In FASE, pages 80–95, 2002.

25. F. He, X. Gao, B. Wang, and L. Zhang. Leveraging Weighted Automata in Compositional
Reasoning about Concurrent Probabilistic Systems. In POPL, pages 503–514, 2015.

26. F. Howar, D. Giannakopoulou, and Z. Rakamarić. Hybrid learning: interface generation
through static, dynamic, and symbolic analysis. In ISSTA, pages 268–279, 2013.

27. F. Howar, B. Ste↵en, B. Jonsson, and S. Cassel. Inferring Canonical Register Automata. In
VMCAI, pages 251–266, 2012.

28. M. Isberner, F. Howar, and B. Ste↵en. Learning register automata: from languages to pro-
gram structures. Machine Learning, 96(1-2):65–98, 2014.

29. M. Isberner, F. Howar, and B. Ste↵en. The open-source LearnLib. In CAV, pages 487–495,
2015.

30. M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory. MIT
Press, Cambridge, MA, USA, 1994.

31. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program
termination. In POPL, pages 81–92, 2001.

32. S.-W. Lin, E. André, Y. Liu, J. Sun, and J. S. Dong. Learning assumptions for composition-
alverification of timed systems. IEEE Transactions on Software Engineering, 40(2):137–
153, 2014.

33. O. Maler and L. Staiger. On Syntactic Congruences for Omega-Languages. In STACS, pages
586–594, 1993.

34. D. Peled, M. Y. Vardi, and M. Yannakakis. Black box checking. Journal of Automata,
Languages and Combinatorics, 7(2):225–246, 2002.

35. R. L. Rivest and R. E. Schapire. Inference of Finite Automata Using Homing Sequences. In
STOC, pages 411–420, 1989.

36. J. Sun, H. Xiao, Y. Liu, S.-W. Lin, and S. Qin. TLV: abstraction through testing, learning,
and validation. In FSE, pages 698–709, 2015.

37. Y.-K. Tsay, M.-H. Tsai, J.-S. Chang, and Y.-W. Chang. Büchi Store: An Open Repository of
BüChi Automata. In TACAS, pages 262–266, 2011.

38. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifica-
tion. In LICS, pages 322–331, 1986.

39. F. Wang, J. Wu, C. Huang, and K. Chang. Evolving a Test Oracle in Black-Box Testing. In
FASE, pages 310–325, 2011.

40. H. Xiao, J. Sun, Y. Liu, S.-W. Lin, and C. Sun. Tzuyu: Learning stateful typestates. In ASE,
pages 432–442, 2013.

Appendix

In this section, we first show that although our acceptance condition defined in Sec. 2 is
di↵erent from the original one defined in [10], but the ultimately periodic words of the
FDFA will be preserved. Then, we give the refinement for the progress trees of syntactic
and recurrent FDFAs in Sec. B. In Sec. C, we present the proofs of the lemmas given
in Sec. 6. In Sec. D, we provide the constructions for the FAsDu$v,D1 andD2 as well
as the correctness proof of counterexample analysis. We also give the correctness proof
and complexity of the tree-based learning algorithm in Sec. E.

A Language Preservation under Di↵erent Acceptance Conditions

Recall that the original acceptance condition for periodic FDFA in [10] is that (u, v)
is accepted by F if v 2 L(Aũ) where ũ = M(u). While the original acceptance condi-
tions for syntactic and recurrent FDFA in [10] are the same as the one defined in this
paper. More specifically, (u, v) is accepted by F if M(uv) = M(u) and v 2 L(AM(u)).
The set of ultimately periodic words of an FDFA F is defined as UP(F) = {uv! |
(u, v) is accepted by F }. The acceptance condition for periodic FDFA used in this pa-
per is di↵erent from the original one in [10]. We prove that the acceptance condition
does not change the ultimately periodic words of the periodic FDFAs.

Lemma 6. Let F be a periodic (syntactic, recurrent) FDFA under the acceptance con-
dition in [10], then UP(F) is preserved under the acceptance condition defined in this
paper.

Proof. We only need to prove the preservation of ultimately periodic words for the pe-
riodic FDFAs. Given a periodic FDFA F , the original acceptance condition of periodic
FDFA requires that (u, v) is accepted by F if v 2 L(Aũ) where ũ = M(u). Clearly, the
acceptance condition defined in this paper implies the original acceptance condition for
the periodic FDFA. Therefore, we only need prove that if (u, v) satisfies the original
acceptance condition, then there exists some decomposition (x, y) of !-word uv! which
satisfies our acceptance condition. To achieve this, we first find a normalized formaliza-
tion (x, y) of (u, v) such that x = uvi, y = v j and xy vM x for some i � 0, j � 1 according
to [10]. Further, it is known that periodic FDFA is saturated in the sense that under the
original acceptance condition, if (u, v) is accepted by F , then every decomposition of
uv! is accepted by F . Therefore we have that (x, y) is accepted by F , which means that
y 2 L(Ax̃) where x̃ = M(x). It follows that (x, y) is accepted by F under our acceptance
condition. ⌅

We remark that in [10], they also define an acceptance condition called normalized
acceptance condition, which is able to make the syntactic and recurrent FDFAs satu-
rated in the sense that if (u, v) is accepted by the FDFA, then every decomposition of
uv! is accepted by the FDFA. Since our goal is to learn a BA in this paper, we do not
require the saturation property for all decompositions of accepted !-word. Thus, we do
not use the normalized acceptance condition.

B Refinement of the Progress Trees

Suppose ũ · v! < UP(L) for negative counterexample (u, v), we thus need refine the
progress tree Tũ. Let |v| = n and h = s0s1 · · · sn be the corresponding run of v over Aũ.
At the beginning, we have s0 = ✏ and sn = ṽ where ṽ = Aũ(v) and ṽ is an accepting
state in Aũ, which implies that ũ(ṽ)! 2 UP(L). Our job here is to find the smallest
j 2 [1 · · · n] such that TE(s j�1, v[j · · · n]) , TE(s j, v[j + 1 · · · n]) so that we can use the
experiment e = v[j + 1 · · · n] to di↵erentiate pa = s j�1v[j] and q = s j since currently
s j = �(s j�1, v[j]).

Afterwards, the progress tree Tũ can be refined by replacing the terminal node la-
beled with s j by a tree such that (i) its root is labeled by e = v[j + 1 · · · n], (ii) its
TE(s j, v[j+1 · · · n])-subtree is a terminal node labeled by s j, and (iii) its TE(s j�1v[j], v[j+
1 · · · n])-subtree is a terminal node labeled by s j�1v[j].

In order to establish above result, we have to prove that TE(s0, v) , TE(sn, ✏) to
ensure that there exists some j 2 [1 · · · n] such that TE(s j�1, v[j · · · n]) , TE(s j, v[j +
1 · · · n]). The proof is as follows.

– For periodic FDFA, we have TE(✏, v) = F since ũ(✏ · v)! < UP(L). Since ṽ is an
accepting state, we have TE(ṽ, ✏) = T.

– For syntactic FDFA, we notice that the counterexample requires uv vM u, that is,
ũ = M(uv) = M(u) = M(ũv).
First, we have TE(✏, v) = (M(ũ · ✏),B) = (ũ,B), where B is obtained here since
ũ = M(ũ · ✏ · v) and ũ(✏ · v)! < UP(L) according to the definition of TE in syntactic
FDFA.
Since ṽ is an accepting state in syntactic FDFA, it follows that ũ = M(ũṽ) and
ũ(ṽ)! 2 L according to Def. 2. Thus, we have TE(ṽ, ✏) = (M(ũṽ),A) = (ũ,A)
where A is obtained since ũ = M(ũ · ṽ · ✏) and ũ(ṽ · ✏)! 2 UP(L).

– For recurrent FDFA, similar as in syntactic FDFA, we have TE(✏, v) = F and
TE(ṽ, ✏) = T.

We remark that, if the target is syntactic or recurrent FDFA, as long as the leading
automaton M changes, we need to initialize the classification tree Tu again for every
state u in leading automaton since the labels on the edges depend on current leading
automaton M.

C Proofs of Lem. 3, Lem 4 and Lem 5

Lemma 4. Given an FDFA F = (M, {Au}), and B the BA constructed from F by Def. 4.
If (u, vk) is accepted by F for every k � 1, then uv! 2 UP(L(B)).

Proof. From the assumption, we have uvk vM u and vk 2 L(Aũ) for any k � 1 where
ũ = M(u). It must be the case that some accepting state, say f in Aũ, will be visited
twice after we read vn from initial state for some n > |Aũ| with f = Aũ(vn) since Aũ is a
finite automaton. In other words, there is a loop in the run of vn over Aũ. Without loss
of generality, suppose there exist i, j � 1 with i + j = n such that f = Aũ(vi) = Aũ(vi+ j).

In the following, our goal is to find some accepting state f 0 such that f 0 = Aũ(vk) =
Aũ(v2k) for some k � 1. Fig. 8 depicts how to find the accepting state f 0 along the loop
path in following two cases.

– j � i. Let k = j.
– j < i. Let k = l ⇥ j such that k � i with the smallest l � 1.

sũstart f f 0

j � i

vi
v j�i

vi

sũstart f f 0

j < i

vi
vc

v j�c

Fig. 8. Finding vk. If j � i, we let k = j, otherwise let c = (l · j � i)% j � 0 where k = l · j � i for
some l � 1

It is easy to check that Aũ(vk) = Aũ(v2k) since progress automaton Aũ is deterministic
and the corresponding f 0 is an accepting state.

It follows that vk is accepted by the product P(ũ, f 0) of three automata Mũ
ũ , (Aũ)sũ

f 0 and
(Aũ) f 0

f 0 where sũ is the initial state of Aũ. In other words, !-word uv! will be accepted in
B since u · (vk)! 2 L(Mq0

ũ) · (L(P(ũ, f 0)))
!. ⌅

Lemma 5. Given an !-word w 2 UP(L(B)), there exists a decomposition (u, v) of w
and n � 1 such that v = v1 · v2 · · · vn and for all i 2 [1 · · · n], vi 2 L(AM(u)) and uvi vM u.

Proof. Here we only consider ultimately periodic !-words in B, so every !-word can
be given by a decomposition.

Since UP(L(B)) =
S

u2Q,p2Fu
L(Mq0

u) · (L(P(u,p)))!, suppose !-word w = uv! 2
UP(L(B)), then w can be given by a decomposition (u, v) such that u 2 L(Mq0

ũ) and
v 2 (L(P(ũ,p)))+ for some p 2 Fũ where ũ = M(u). Thus, we have v = v1 · · · vn for some
n � 1 such that vi 2 L(P(ũ,p)) for every 1 i n. In addition, since P(ũ,p) = Mũ

ũ ⇥ (Aũ)sũ
p ,

we conclude that uv vM u and vi 2 L((Aũ)sũ
p) for every 1 i n where sũ is the initial

state in Aũ.
Observe that p is the only accepting state of (Aũ)sũ

p and (Aũ)sũ
p is obtained from Aũ

by setting p 2 Fũ as its only accepting state, we have that p = (Aũ)sũ
p (vi) = Aũ(vi) for

every 1 i n and p is an accepting state in Aũ.
The remaining job is how to find the accepting state p in Aũ. Suppose we have the

counterexample uv! given by the decomposition (u, v), from which we construct the FA
Du$v by the method in Sec. D.1. The number of states in Du$v is in O(|v|(|v| + |u|)). In
addition, we can construct an FA A such that L(A) =

S
u2Q,p2Fu

L(Mq0
u) · $ · (L(Mu

u ⇥
(Au)su

p))+ where su is the initial state of Au. By fixing u and p, we get L(A(u,p)) =
L(Mq0

u) · $ · (L(Mu
u ⇥ (Au)su

p))+ = L(Mq0
u) · $ · (L(P(u,p)))+. We get the corresponding u

and p such that L(A(u,p) ⇥ Du$v) , ;. There must exist such u and p otherwise uv!

will not be accepted by B. To get all the fragment words vi from v, one only needs to
run the finite word v over P(u,p). The time and space complexity of this procedure are
in O(nk(n + nk) · (|v|(|v| + |u|))) and O((n + nk) · (|v|(|v| + |u|))) respectively where n is
the number of states in the leading automaton and k the number of states in the largest
progress automaton. Thus we complete the proof. ⌅

Lemma 3 (Sizes and Languages of B and B). Let F be an FDFA and B, B be the
BAs constructed from F by Def. 4. Let n and k be the numbers of states in the leading
automaton and the largest progress automaton of F . The number of states of B and B
are in O(n2k3) and O(n2k2), respectively. Moreover, UP(L(B)) ✓ UP(F) ✓ UP(L(B))
and we have UP(L(B)) = UP(F) when F is a canonical FDFA.

Proof. In the following, we prove the lemma by following cases.

– Sizes of B and B. In the under approximation construction, for every state u in M,
there is a progress automaton Au of size at most k. It is easy to conclude that the
automaton P(u,v) is of size nk2 for every v 2 Fu, so B is of size n+nk ·nk2 2 O(n2k3).
The over-approximation method di↵ers in the construction of the automaton P(u,v)
from the under-approximation method. It is easy to conclude that the automaton
P(u,v) is of size nk for every v 2 Fu, so B is of size n + nk · nk 2 O(n2k2).

– UP(L(B)) ✓ UP(F). Suppose ultimately periodic !-word w is accepted by B, there
must be an accepting run in B in form of q0

u�! ũ
✏�! sũ,v

v1�! fv
✏�! f 0v

✏�! sũ,v · · · . Then
the !-word w can be divided into the form of u · ✏ · v1 · ✏ · ✏ · v2 · · · by ✏-transitions.
According to the construction of B, we have u 2 L(Mq0

ũ) and vi 2 L(P(ũ,v)) for any
i � 1. Moreover, since P(ũ,v) is the product of three automata Mũ

ũ , (Aũ)sũ
v and (Aũ)v

v

where sũ is the initial state in Aũ. It follows that L(Mq0
ũ) · (L(P(ũ,v)))⇤ = L(Mq0

ũ) and
(L(P(ũ,v)))+ = L(P(ũ,v)).
By Lem.5 in [14], there exist two words x 2 L(Mq0

ũ) and y 2 L(P(ũ,v)) such that
w = x · y!. In other words, we have ũ = M(x), xy vM x and y 2 L(Aũ) , which
implies that w is accepted by F .

– UP(F) ✓ UP(L(B)). Suppose an !-word w 2 UP(F), then there exists a decom-
position (u, v) of w such that uv vM u and ṽ is an accepting state where ũ = M(u)
and ṽ = Aũ(v). It follows that v 2 L(P(ũ,ṽ)) according to Def. 4. In addition, we have
u 2 L(Mq0

ũ), which follows that u · v! 2 L(Mq0
ũ) · (L(P(ũ,ṽ)))! = UP(L(B)).

– UP(L(B)) = UP(F) ifF is a canonical FDFA. For any FDFAF , we have UP(L(B)) ✓
UP(F). Thus, the remaining job is to prove that UP(F) ✓ UP(L(B)) if F is a
canonical FDFA, which follows from Prop. 1 and Lem. 4. Thus, we complete the
proof.

⌅

We present Prop. 1, which follows from Def. 2 of the canonical FDFAs.

Proposition 1. Let L be an !-regular language, F = (M, {Au}) the corresponding pe-
riodic (syntactic, recurrent) FDFA and u, v 2 ⌃⇤. We have that if (u, v) is accepted by
F then (u, vk) is also accepted by F for any k � 1.

Proof. Let ũ = M(u) and ṽk = Aũ(vk) , then we have that vk ⇡ũ
K ṽk for every k � 1 where

K 2 {P, S ,R}. This is because ṽk = Aũ(ṽk) = Aũ(vk) which makes vk in the equivalence
class [ṽk]. Our goal is to prove that (u, vk) is also accepted by F , that is, uvk vM u and
ṽk is an accepting state for every k � 1. Since vM and vL is consistent in the three
canonical FDFAs, so from the fact that (u, v) is accepted by F , we have that uv vM u,
i.e., uv vL u. It follows that uvk vL u for every k � 1. Thus, the remaining proof is to
prove that ṽk is an accepting state for every k � 1 in the three canonical FDFAs.

– For periodic FDFA, since (u, v) is accepted by F , i.e, ṽ is an accepting state in Aũ,
then we have ũ(ṽ)! 2 L according to Def. 2. By definition of ⇡ũ

P and the fact that
ṽ ⇡ũ

P v, we have that ũ(v)! 2 L, i.e., ũ(vk)! 2 L for every k � 1. Similarly, since
ũ(vk)! 2 L and vk ⇡ũ

P ṽk, we conclude that ũ(ṽk)! 2 L, which means that the state
ṽk is an accepting state in Aũ for every k � 1.

– By the definition of ⇡ũ
R, if x ⇡ũ

R y, then we have ũx vL ũ ^ ũx! 2 L () ũy vL

ũ ^ ũy! 2 L for any x, y 2 ⌃⇤. Since x ⇡ũ
S y implies x ⇡ũ

R y, we also have above
result if x ⇡ũ

S y. In the following, ⇡ũ
K can be replaced by ⇡ũ

S and ⇡ũ
R.

For syntactic FDFA and recurrent FDFA, if (u, v) is accepted by F , then ũṽ vL ũ
and ũ(ṽ)! 2 L according to Def. 2. By the fact that v ⇡ũ

K ṽ, if we set x = v and
y = ṽ, then we have that ũv vL ũ and ũ(v)! 2 L, which implies that ũvk vL ũ and
ũ(vk)! 2 L for every k � 1.
Similarly, as vk ⇡ũ

K ṽk, if we set x = vk and y = ṽk, we have that ũṽk vL ũ and
ũ(ṽk)! 2 L, which follows that ṽk is an accepting state in Aũ for every k � 1. ⌅

D Finite Automaton Construction and Correctness for
Counterexample Analysis

D.1 Construction forDu$v

In [14], they presented a canonical representation L$ = {u$v | u 2 ⌃⇤, v 2 ⌃+, uv! 2 L}
for a regular !-language L. Theoretically, we can apply their method to obtain theDu$v
automaton for an !-word uv! where the number of states in Du$v is in O(2|u|+|v|). In
this section, we introduce a more e↵ective way to build an automaton Du$v such that
L(Du$v) = {u$v | u 2 ⌃⇤, v 2 ⌃+, uv! = w} for a given !-word w with the number
of states in O(|v|(|v| + |u|)). A similar construction for Du$v has been proposed in [20],
which first computes the regular expression to represent all possible decompositions of
uv! and then constructs a DFA from the regular expression. In this section, we give a
direct construction forDu$v of uv! as well as the complexity of the construction.

Fig. 9 depicts an example automaton Du$v for !-word (ab)!. From the example,
we can find that both decompositions (aba, ba) and (ababa, bababa) have the same
periodic word (ba)!, which means that the second finite word of a decomposition can
be simplified as long as we do not change the periodic word.

q0start q1 q2 q3

q4 q5 q6 q7

$

a

a
b

a
b

$ b
a

b

Fig. 9.Du$v for !-word (aba, ba)

Formally, we give the definition of a smallest period in an !-word w given by its
decomposition (u, v) where v 2 ⌃+. To that end, we need more notations. We use u E v
to represent that there exists some j � 1 such that u = v[1 · · · j] , and we say u is a
prefix of v. We use u C v if u E v and u , v.

Definition 6 (Smallest period). For any !-word w given by (u, v), we say r is the s-
mallest period of (u, v) if r E v, r! = v! and for any t C r, we have t! , r!.

Take the !-word (ab)! as an example, ab and ba are the smallest periods of decomposi-
tion (ab, ab) and (aba, ba) respectively. It is interesting to see that |ab| = |ba| and ab can
be transformed to ba by shift the first letter of ab to its tail. In general, given !-word
w, the length of the smallest period is fixed no matter how w is decomposed which is
justified by Lem. 7.

Lemma 7. Given an !-word w, (u, v) and (x, y) are di↵erent decompositions of w and
their corresponding smallest periods are r and t, respectively. Then |r| = |t| = n and
either there exists j � 2 such that r = t[j · · · n] · t[1 · · · j � 1] or r = t.

Proof. According to Def. 6, w = uv! = ur! = xy! = xt!. We prove it by contradiction.
Without loss of generality, suppose |r| > |t|. If |u| = |x|, then r! = t!, we then conclude
that r is not a smallest period of (u, v) since t C r. Otherwise if |u| , |x|, we can either
prove that r = t or find some j � 2 such that z = t[j · · · n] · t[1 · · · j � 1] C r and z! = r!

in following cases.

– |u| > |x|. Let k = (|u| � |x|)%|t| + 1. If k = 1, then z = t, otherwise j = k;
– |x| > |u|. Let k = (|r| � (|x| � |u|)%|r|)%|t| + 1. If k = 1, then z = t, otherwise j = k;

We depict the situation where |u| > |x| in the following.

(u, r) u[1]u[2] · · · u[k]u[k + 1] · · · u[m] · r · r · r · · ·
(x, t) x[1]x[2] · · · x[k]t[1] · · · · ·t[j � 1] · z · z · z · · ·

From the assumption |t| < |r|, we have that z C r. However, since z! = r!, we
conclude that r is not the smallest period of (u, v). Contradiction. Thus we complete the
proof. ⌅

Lem. 7 shows that if the size of the smallest period of an !-word w is n, then there
are exactly n di↵erent smallest periods for w. In the following, we define the shortest
form for a decomposition of an !-word.

Lemma 8. For any decomposition (u, v) of an !-word w, and y is its corresponding
smallest period, then we can rewrite u = xyi and v = y j for some i � 0, j � 1 such that
for any x0 E u with u = x0yk for some 0 k i, we have x0 = xyi�k. We say such (x, y)
is the shortest form for (u, v).

Proof. This can be proved by Def. 6 and the fact that y! = v!, which can be further
illustrated by the procedure of constructing (x, y). To find the shortest form of (u, v),
we need to first find the smallest period y of (u, v), which is illustrated by following
procedure. At first we initialize k = 1.

– Step 1. Let y = v[1 · · · k], we recursively check whether there exists some j � 1
such that v = y j. If there exists such j, we return y as the smallest period. Otherwise
we go to Step 2.

– Step 2. We increase k by 1 and go to Step 1.

Since k starts at 1, then y must be the smallest period of (u, v) such that v! = y!.
We find the above x of the shortest form in the following procedure.

– Step 1. Let x = u. If x = ✏, or x = y then we return ✏. Otherwise we check whether
there exists some k � 1 such that x = x[1 · · · k] ·x[k+1 · · · |x|] and y = x[k+1 · · · |x|].
If there is no such k, we return x as the final result. Otherwise we go to Step 2.

– Step 2. We set u = x[1 · · · k].

One can easily conclude that x is the shortest prefix of u such that u = xyi for some
i � 0. ⌅

Following corollary is straightforward.

Corollary 1. Given two decompositions (u1, v1) and (u2, v2) of uv!. If (u1, v1) and (u2, v2)
share the smallest period y, then they also have the same shortest form (x, y) where
u1 = xyi, u2 = xy j for some i, j � 0.

Proof (Sketch). If we assume they have di↵erent shortest forms, they should not be two
decompositions of the same !-word. ⌅

By Coro. 1, we can represent all decompositions of an !-word w which share the
same smallest period y with (xyi, y j) with some i � 0, j � 1. In addition, since the
number of di↵erent smallest periods is |y|, we can thus denote all the decompositions of
w by the set

S|y|
k=1{(xkyi

k, y
j
k) | i � 0, j � 1} where (xk, yk) is the k-th shortest form of w.

Therefore, we provide the construction ofDu$v as follows.

Construction ofDu$v Now we are ready to give the construction of Du$v for a single
!-word w given by (u, v). Suppose (x, y) is the shortest form of (u, v), then we construct
Du$v as follows. Let k = 1, n = |y|, and we first construct an automaton D1 such that
L(D1) = xy⇤$y+.

– Step 1. If k = n, then we construct the Du$v such that L(Du$v) =
Sn

i=1 L(Di),
otherwise, we go to Step 2.

– Step 2. We first increase k by 1. Let u0 = x · y[1] and y0 = y[2 · · · n] · y[1]. We then
get the shortest form (x0, y0) of (u0, y0) where the second element is y0 since y0 is the
smallest period of (u0, y0) according to Lem. 7. We then construct an automaton Dk

such that L(Dk) = x0y0⇤$y0+ and let x = x0, y = y0 and go to Step 1.

Suppose |x| = m and |y| = n, the DFA A that accepts xy⇤$y+ can be constructed as
follows.

– If m = 0, then we construct a DFA A = (⌃, {q0, · · · , q2n}, q0, {q2n}, �) where we
have that �(qk�1, y[k]) = qk when 1 k n � 1, �(qn�1, y[n]) = q0, �(q0, $) = qn,
�(qn�1+k, y[k]) = qn+k when 1 k n, and �(q2n, y[1]) = qn+1.

– Otherwise m � 1, then we construct a DFA A = (⌃, {q0, · · · , q2n+m}, q0, {qm+2n}, �)
where we have that �(qk�1, x[k]) = qk when 1 k m, �(qm�1+k, y[k]) = qm+k when
1 k n � 1, �(qm+n�1, y[n]) = qm, �(qm, $) = qm+n, �(qm+n+k�1, y[k]) = qm+n+k

when 1 k n, and �(qm+2n, y[1]) = qm+n+1.

One can validate that L(A) = xy⇤$y+ and the number of states in A is at most |x|+2|y|+1.

Proposition 2. Let Du$v be the DFA constructed from the decomposition (u, v) of !-
word uv!, then L(Du$v) = {u0$v0 | u0 2 ⌃⇤, v0 2 ⌃+, u0v0! = uv!}.
Proof.
✓. This direction is easy since L(Du$v) =

Sn
i=1 L(Di), we only need to prove that for any

1 i n, if u0$v0 2 Sn
i=1 L(Di), then u0v0! = uv!. Suppose L(Di) = xiy⇤i $y+i , thus for

any u0$v0 2 L(Di), we have u0 = xiy
j
i and v0 = yk

i for some j � 0, k � 1. It follows that
u0v0! = uv! since xiy!i = uv!.
◆. For any decomposition (u0, v0) of uv!, we can get its shortest form (x0, y0) where y0
is the smallest period of (u0, v0) according to Lem. 8. Suppose (x, y) is the first shortest
form used in the Du$v construction. By Lem. 7, we prove u0$v0 is accepted by Du$v as
follows.

– y = y0. We have that u0 = xyi and v0 = y j for some i � 0, j � 1, thus u0$v0 2
L(D1) ✓ L(Du$v).

– y0 = y[j · · · n]y[1 · · · j � 1] for some j � 2. We conclude that L(Dj) = x0y0⇤$y0+
since the shortest form is unique if we fix the smallest period by Coro. 1, which
follows that u0$v0 2 L(Dj) ✓ L(Du$v).

Therefore, we complete the proof. ⌅

Proposition 3. Given an !-word w given by (u, v), then the automaton Du$v has at
most O(|v|(|u| + |v|) of states.

For every automaton Di such that L(Di) = xy⇤$y+, the number of states in Di is at
most |u| + 2|r| + 2 where r is the smallest period of (u, v), thus the number of states in
Du$v is in O(|r| ⇥ (|r| + |u|)) 2 O(|v|(|u| + |v|).

D.2 Construction ofD1 andD2

In this section, given an FDFA F = (M, {Au}), we provide the constructions for D1
and D2. To ease the construction, we define two automata Nu and Nu which will be
used in the construction for every state u in the leading automaton M. Assume that we
have Mu

u , the corresponding progress automaton Au = (⌃,Qu, su, Fu, �u) and a DFA
Au = (⌃,Qu, su,Qu \ Fu, �u) built from Au such that L(Au) = ⌃⇤ \ L(Au). Note that the
transition �u is complete in the sense that �u(s, a) is defined for every s 2 Qu, a 2 ⌃.

– For D1, we have Nu = Mu
u ⇥ Au. Intuitively, we only keep the finite words which

start at u and can go back to u in the leading automaton. In other words, L(Nu) =
{v 2 ⌃⇤ | uv vM u, v 2 L(Au)}.

– ForD2, we have Nu = Mu
u ⇥ Au. Similarly, we have L(Nu) = {v 2 ⌃⇤ | uv vM u, v <

L(Au)}.

More precisely, The construction is as follows.

Definition 7. Let F = {M, {Au}} be an FDFA where we have M = (⌃,Q, q0, �) and for
every u 2 Q, the corresponding progress automaton Au = (⌃,Qu, su, Fu, �u). Let Nu

(and Nu) be given by (⌃,Qu, su, Fu, �u). The DFA D1 (and D2) is defined as the tuple
(⌃ [{$},Q [QAcc, q0, F, � [�Acc [�$) where

QAcc =
[

u2Q
Qu and F =

[

u2Q
Fu and �Acc =

[

u2Q
�u

�$ = {(u, $, su) | u 2 Q}
where $ is a fresh symbol.

In Fig. 10, we depict the DFAD1 andD2 constructed from F in Fig. 1.

q0start q1 q2

D1
a

b

$ a, b

a

b

q0start q1 q2

D2
a

b

$ a,b

a

b

Fig. 10.D1 andD2 for F in Fig. 1

Proposition 4. Given an FDFA F = (M, {Au}) andD1 defined in Def. 7, then L(D1) =
{u$v | u 2 ⌃⇤, v 2 ⌃⇤, uv vM u, ũ = M(u), v 2 L(Aũ)}.
Proof. By Def. 7, it is easy to conclude that for any u 2 ⌃⇤, then we have ũ = M(u) =
D1(u). For any u, v 2 ⌃⇤, we have that Nũ(v) = D1(u$v) where ũ = M(u) since D1
is a DFA. By acceptance condition, (u, v) is accepted by F i↵ we have uv vM u and
v 2 L(Aũ) where ũ = M(u). Thus we just need to prove that (u, v) is accepted by F i↵
u$v is accepted byD1.
◆. (u, v) is accepted by F , then u$v 2 L(D1). By uv vM u and v 2 L(Aũ), we have that
v 2 L(Nũ), which follows that Nũ(v) is an accepting state. Since Nũ(v) = D1(u$v), we
have thatD1(u$v) is an accepting state. Therefore, u$v 2 L(D1).
✓. First, we have that L(D1) ✓ ⌃⇤$⌃⇤ by Def. 7. For any u, v 2 ⌃⇤, if u$v 2 L(D1),
then D1(u$v) is an accepting state. It follows that v 2 L(Nũ) with ũ = M(u). Since
Nũ = Mũ

ũ ⇥ Aũ, we have that v 2 L(Mũ
ũ) and v 2 L(Aũ), which implies that uv vM u and

v 2 L(Aũ). Thus, we conclude that (u, v) is accepted by F . ⌅

Proposition 5. Given an FDFA F andD2 the corresponding deterministic automaton,
then L(D2) = {u$v | u 2 ⌃⇤, v 2 ⌃⇤, uv vM u, ũ = M(u), v < L(Aũ)}.
Proof. By Def. 7, it is easy to conclude that for any u 2 ⌃⇤, then we have ũ = M(u) =
D2(u). For any u, v 2 ⌃⇤, we have that Nũ(v) = D2(u$v) where ũ = M(u) since D2 is a
DFA.

◆. Assume that we have uv vM u and v < L(Aũ) where ũ = M(u). By uv vM u, we
have that v 2 L(Mũ

ũ). Further, from v < L(Aũ), we have that v 2 L(Aũ). It follows that
Nũ(v) is an accepting state. Since Nũ(v) = D2(u$v), thenD2(u$v) is an accepting state.
Therefore, u$v 2 L(D2).
✓. First, we have that L(D2) ✓ ⌃⇤$⌃⇤ by Def. 7. For any u, v 2 ⌃⇤, if u$v 2 L(D2),
then D2(u$v) is an accepting state. It follows that v 2 L(Nũ) with ũ = M(u). Since
Nũ = Mũ

ũ ⇥ Aũ, we have that v 2 L(Mũ
ũ) and v 2 L(Aũ), which implies that uv vM u and

v < L(Aũ). ⌅

Proposition 6. The numbers of states inD1 andD2 are both in O(n + n2k).

Suppose n is the number of states in M and k is the number of states in the largest
progress automaton, then the number of states inD1 (D2) is in O(n + n2k).

D.3 Correctness of Counterexample Analysis for FDFA Teacher

Given the counterexample uv! for the FDFA teacher, we prove the decomposition
(u0, v0) is a counterexample for FDFA learner defined in Def. 3 by following cases:

– uv! 2 UP(L)^ uv! < UP(F). By Def. 3, we know that uv! is a positive counterex-
ample and we return a counterexample (u0, v0) such that u0$v0 2 L(Du$v) \ L(D2).
We first need to prove that L(Du$v) \ L(D2) is not empty. Since uv! < UP(F),
then any decomposition of uv!, say (u, v), is not accepted by F . Since M is a DFA,
we can always find a decomposition x = uvi and y = v j from some i � 0, j � 1
such that xy vM x according to [10]. Therefore (x, y) is also a decomposition of
uv! and it is not accepted by F , that is, y < L(Ax̃) where x̃ = M(x). It follows that
x$y 2 L(D2) according to Thm. 5. Thus, we conclude that L(Du$v) \ L(D2) is not
empty. We let u0 = x and v0 = y, and it is easy to validate that (u0, v0) is a positive
counterexample for FDFA learner. This case is applied for case U1 and O1.

– uv! 2 UP(L) ^ uv! 2 UP(F). In this case, uv! is a spurious positive counterex-
ample, which happens when we use the under-approximation method to construc-
t the Büchi automaton. Here we also return a counterexample (u0, v0) such that
u0$v0 2 L(Du$v) \ L(D2). Since uv! 2 UP(F), then there exists some decom-
position of uv!, say (u, v), is accepted by F . We observe that uv! < UP(L(B)),
which follows that there exists some k � 1 such that (u, vk) is not accepted by F
by Lem. 4. By uv vM u, we also have that uvk vM u since M is a DFA. It fol-
lows that u$vk 2 L(D2). Therefore, we conclude that L(Du$v)\ L(D2) is not empty
and for every finite word u0$v0 2 L(Du$v) \ L(D2), we have (u0, v0) is a positive
counterexample for FDFA learner. This case is applied for U3.

– uv! < UP(L) ^ uv! 2 UP(F). In this case, uv! is a negative counterexample,
one has to return a counterexample (u0, v0) such that u0$v0 2 L(Du$v) \ L(D1). We
first need to prove that L(Du$v) \ L(D1) is not empty. Since uv! 2 UP(F), then
there exists some decomposition (u0, v0) of uv! is accepted by F . It follows that
u0$v0 2 L(D1) by Thm. 4. Thus we conclude that L(Du$v) \ L(D1) is not empty.
Moreover, it is easy to validate that (u0, v0) is a negative counterexample for FDFA
learner. This case is applied for U2 and O2.

– uv! < UP(L)^uv! < UP(F). In this case, uv! is a spurious negative counterexam-
ple, which happens when we use the over-approximation method to construct the
Büchi automaton. It is possible that we cannot find a valid decomposition (u0, v0)
to refine F . According to the proof of Lem. 5, one can construct a decomposition
(u, v) of uv! and n � 1 such that v = v1·v2 · · · vn and for all i 2 [1 · · · n], vi 2 L(AM(u))
and uvi vM u. If we find some i � 1 such that uv!i < UP(L), then we let u0 = u and
v0 = vi. Clearly, (u0, v0) is a negative counterexample for FDFA learner. This case is
applied for O3.

E Correctness and Termination of Tree-based Algorithm

In the following, we need the notion called normalized factorization introduced in [10].
Recall that given a decomposition (u, v) of !-word uv! and the leading automaton M,
we can get its normalized factorization (x, y) with respect to M such that x = uvi, y = v j

and M(xy) = M(x) for some smallest i � 0, j � 1 since M is finite.

E.1 Correctness of Tree-based Algorithm for FDFA

Lem. 9 establishes the correctness of our tree-based algorithm for periodic FDFA.

Lemma 9. For the leading tree in all three FDFAs and the progress trees in the periodic
FDFA, the tree-based algorithm will never classify two finite words which are in the
same equivalence class into two di↵erent terminal nodes.

Proof. We prove by contradiction. Suppose there are two finite word x1, x2 2 ⌃⇤ which
are in the same equivalence class but they are currently classified into di↵erent terminal
nodes in classification tree T .

– T is the leading tree. We assume that x1 vL x2. Suppose x1 and x2 have been
assigned to terminal nodes t1 and t2 respectively with t1 , t2. Therefore, we can
find the least common ancestor n from T , where Ln(n) = (y, v) is supposed to be
an experiment to di↵erentiate x1 and x2. Without loss of generality, we assume that
t1 and t2 are in the left and right subtrees of n respectively. Therefore, we have
TE(x1, (y, v)) = F and TE(x2, (y, v)) = T. It follows that x1(yv)! < UP(L) and
x2(yv)! 2 UP(L), which implies that x1 6vL x2. Contradiction.

– T = Tu is a progress tree in periodic FDFA. We assume that x1 ⇡u
P x2. Similarly,

suppose x1 and x2 have been assigned to terminal nodes t1 and t2 of Tu respec-
tively with t1 , t2. Therefore, we can find the least common ancestor n from Tu,
where Ln(n) = v is supposed to be an experiment to di↵erentiate x1 and x2. Without
loss of generality, we assume that t1 and t2 are in the left and right subtrees of n
respectively. Therefore, we have TE(x1, v) = F and TE(x2, v) = T. It follows that
u(x1v)! < UP(L) and u(x2v)! 2 UP(L), which implies that x1 6⇡u

P x2. Contradic-
tion.

⌅

Lem. 9 cannot apply to the progress trees in syntactic and recurrent FDFAs as the
progress trees heavily rely on the current leading automaton. In the following, we prove
the correctness of syntactic and recurrent FDFA. We say the leading automaton M is
consistent with vL i↵ for any x1, x2 2 ⌃⇤, we have M(x1) = M(x2)() x1 vL x2.

Lemma 10. For the progress trees in the syntactic and recurrent FDFA, the tree-based
algorithm will never classify two finite words which are in the same equivalence class
into two di↵erent terminal nodes if the leading automaton M is consistent with vL.

If the tree-based algorithm classifies two finite words which are in the same equiva-
lence class into two di↵erent terminal nodes, then M is not consistent with vL currently.

Proof. Intuitively, the progress trees Tu in syntactic and recurrent FDFAs are construct-
ed with respect to the current leading automaton. We prove the lemma in following
cases.

– Tu is a progress tree in syntactic FDFA. We assume that x1 ⇡u
S x2. Suppose x1 and

x2 have been assigned to terminal node t1 and t2 of Tu respectively. Therefore, we
can find the least common ancestor n from Tu, where Ln(n) = v is supposed to be
an experiment to di↵erentiate x1 and x2. Thus, by the definition of TE in syntactic
FDFA, we can assume that d1 := TE(x1, v) = (M(ux1),m1) and d2 := TE(x2, v) =
(M(ux2),m2) where m1,m2 2 {A, B,C}. Since t1 and t2 are in di↵erent subtrees of
n, we thus have d1 , d2, that is, M(ux1) , M(ux2) or m1 , m2.
1) First we assume that M is consistent with vL.
• M(ux1) , M(ux2). Since x1 ⇡u

S x2, we have ux1 vL ux2, which implies that
M(ux1) = M(ux2). Contradiction.

• m1 , m2. Since x1 ⇡u
S x2, we have ux1 vL ux2, which follows that M(ux1) =

M(ux2) since M is consistent with vL. Moreover, we have that M(ux1v) =
M(ux2v) since M is deterministic. We discuss the values of m1 and m2 in the
following.
⇤ u = M(ux1v). It follows that ux1v vL u since M is consistent with vL,

which implies that u(x1v)! 2 UP(L)() u(x2v)! 2 UP(L). Moreover, we
have u = M(ux2v) since ux1 vL ux2. Therefore, we conclude that m1,m2 2
{A, B} by the definition of TE. Without loss of generality, we let m1 = A
and m2 = B, which implies that u(x1v)! 2 UP(L) while u(x2v)! < UP(L).
Contradiction.
⇤ u , M(ux1v). Thus, we have m1 = m2 = C, which follows that d1 = dn

since M(ux1) = M(ux2). Contradiction.
Therefore, t1 and t2 cannot be di↵erent terminal nodes.
2) In this case, M is not necessarily consistent with vL.
• M(ux1) , M(ux2). Let s1 = M(ux1) and s2 = M(ux2). We have that s1 and s2

are classified into di↵erent terminal nodes in the leading tree T since s1 , s2
and they are two labels of the terminal nodes. It follows that s1 6vL s2 by Lem. 9.
By x1 ⇡u

S x2, we have ux1 vL ux2, which implies that s1 6vL ux1 or s2 6vL ux2,
otherwise we get s1 vL s2. Without loss of generality, suppose s1 6vL ux1,
then there exists some experiment (y, v) to di↵erentiate them. However, ux1 is
currently assigned into the equivalence class of s1 since s1 = M(ux1). It follows
that M is not consistent with vL.

• m1 , m2.
1) We assume that ux1v vL u, then we have ux2v vL u since ux1 vL ux2 by
x1 ⇡u

S x2, which implies that u(x1v)! 2 UP(L) () u(x2v)! 2 UP(L). If
M is consistent with vL, we conclude that m1 = m2 = A or m1 = m2 = B.
Contradiction. Therefore, M is not consistent with vL.
2) We assume that ux1v 6vL u, then we can find some experiment (y, z) to di↵er-
entiate them. It follows that ux2v 6vL u since x1 ⇡u

S x2 and ux1 vL ux2. Assume
that M is consistent with vL, then we have that u , M(ux1v) and u , M(ux2v),
which implies that m1 = m2 = C. Contradiction. Thus, M is not consistent with
vL.

– Tu is a progress tree in recurrent FDFA. The analysis is similar as the syntactic
FDFA. We assume that x1 ⇡u

R x2. Suppose x1 and x2 have been assigned to terminal
node t1 and t2 of Tu respectively. Therefore, we can find the least common ancestor
n from Tu, where Ln(n) = v is supposed to be an experiment to di↵erentiate x1
and x2. Thus, we can assume that d1 := TE(x1, v) and d2 := TE(x2, v) where
d1, d2 2 {F,T}. Since t1 and t2 are in di↵erent subtrees of n, we thus have d1 , d2.
1) We assume that M is consistent with vL. Without loss of generality, suppose
d1 = F and d2 = T. Since d2 = T, we have that u = M(ux2v) and u(x2v)! 2 UP(L).
It follows that ux2v vL u since M is consistent with vL. Moreover, we conclude
that u = M(ux1v) and u(x1v)! 2 UP(L) by the fact that x1 ⇡u

R x2. By the definition
of TE, we have d1 = T. Contradiction. Therefore, t1 and t2 cannot be di↵erent
terminal nodes.
2) M is not necessarily consistent with vL. Without loss of generality, suppose
d1 = F and d2 = T. Since d2 = T, we have that u = M(ux2v) and u(x2v)! 2 UP(L).
Assume that M is consistent with vL, it follows that ux2v vL u. Moreover, we
conclude that u = M(ux1v) and u(x1v)! 2 UP(L) by the fact that x1 ⇡u

R x2. By the
definition of TE, we have d1 = T. Contradiction. Therefore, M is not consistent
with vL.

⌅

Once two finite words which are in the same equivalence class have been classified
into two terminal nodes in the progress tree, we can always prove that the leading au-
tomaton is not consistent with vL. Therefore, the FDFA teacher is able to return some
counterexample to refine the leading automaton. If the leading automaton changes, the
FDFA learner should learn all progress automata from scratch with respect to current
leading automaton. At a certain point, the leading automaton M will be consistent with
vL since it will be added a new state after every refinement. Thus, we conclude that the
equivalence classes in the progress trees will finally be classified correctly.

Proposition 7. Given the FDFA teacher that is able to answer membership and equiva-
lence queries for FDFA, the tree-based FDFA learning algorithm can correctly classify
all finite words.

E.2 Complexity for Tree-based FDFA Learning Algorithm

The counterexample guided refinement for F shows that:

Corollary 2. Given a counterexample (u, v) for FDFA learner, the tree-based FDFA
learner will either add a new state to the leading automaton M or the corresponding
progress automaton Aũ.

Corollary. 2 is a critical property for the termination of the tree-based FDFA learning
algorithm since each time we either make progress for the leading automaton or the
corresponding progress automaton.

In Lem. 10, we encounter a situation where the progress tree may classify two finite
words which are in the same equivalence class into two terminal nodes if M is not con-
sistent with vL. One may worry that if the FDFA teacher chooses to refine the progress
automaton continually, the refinement may not terminate. Lem. 11 shows that it will ter-
minate since the number of equivalence classes of the progress automata with respect to
M is finite. More precisely, if we fix the leading automaton M, we are actually learning
a DFA induced by the right congruence x ⇡u

S 0 y i↵ M(ux) = M(uy) and for every v 2 ⌃⇤,
if M(uxv) = u, then u(xv)! 2 L () u(xv)! 2 L. One can easily verify that x ⇡u

S 0 y is a
right congruence. We remark that if M is consistent with vL, then x ⇡u

S 0 y is equivalent
to x ⇡u

S y.

Lemma 11. Given then leading automaton M, then for every state u in M, the index of
⇡u

S 0 is bounded by |Q| · | ⇡u
P | where Q is the state set of M.

Proof. We prove the lemma by giving the upper bound |Q| · | ⇡u
P | of the index of ⇡u

S 0 .
We use qi to denote the state which can be reached by u for 1 i n where n is the
number of states reachable by u. We classify any x 2 ⌃⇤ into a equivalence class of ⇡u

S 0
as follows.

We first find qi = M(ux). Since for every y 2 ⌃⇤ with qi = M(uy), we have M(uxv) =
M(uyv), thus those experiments v 2 ⌃⇤ with M(uxv) , u are not able to di↵erentiate x
and y. In other words, the value of M(uxv) = u is not necessary here. Therefore, if we
only consider x, y 2 ⌃⇤ with qi = M(ux) = M(uy), the criterion to decide whether x and
y are in the same equivalence class is to judge whether for any v 2 ⌃⇤, u(xv)! 2 L ()
u(yv)! 2 L, which is exactly the same definition for ⇡u

P. Thus, we can find the notation
(qi, [x]⇡u

P
) to uniquely represent the equivalence class [x]⇡u

S 0 . Therefore, the index of the
right congruence ⇡u

S 0 is n · | ⇡u
P | |Q| · | ⇡u

P |. ⌅

Similarly, if we fix the leading automaton M and learn recurrent FDFA, we are
actually learning DFA induced by the right congruence x ⇡u

R0 y i↵ for every v 2 ⌃⇤,
M(uxv) = u^ u(xv)! 2 L() M(uyv) = u^ u(yv)! 2 L. Since x ⇡u

S 0 y implies x ⇡u
R0 y,

it follows that | ⇡u
R0 | is smaller than | ⇡u

S 0 |.
The implication from x ⇡u

S 0 y to x ⇡u
R0 y can be easily established by assuming

x ⇡u
S 0 y and then for any v 2 ⌃⇤, we have that uyv vM u ^ u(yv)! 2 L if uxv vM

u ^ u(xv)! 2 L. First, assuming that uxv vM u ^ u(xv)! 2 L and x ⇡u
S 0 y, one can

easily conclude that u(yv)! 2 L. In addition, one can combine the result ux vM uy from
x ⇡u

S 0 y and assumption uxv vM u together to prove uyv vM u since M is deterministic
and vM is an equivalence relation.

Lemma 12. Given the leading automaton M, then for every state u in M, the index of
⇡u

R0 is bounded by |Q| · | ⇡u
P | where Q is the state set of M.

Assume that F = (M, {Au}) is the corresponding periodic FDFA recognizing L. Let
n be the number of states in M of F and k be the number of states in the largest progress
automaton of F .

Theorem 2 (Query Complexity). Let (u, v) be the longest counterexample returned
from the FDFA teacher. The number of equivalence queries needed for the tree-based
FDFA learning algorithm to learn the periodic FDFA of L is in O(n + nk), while the
number of membership queries is in O((n + nk) · (|u| + |v| + (n + k) · |⌃ |)).

For the syntactic and recurrent FDFAs, the number of equivalence queries need-
ed for the tree-based FDFA learning algorithm is in O(n + n3k), while the number of
membership queries is in O((n + n3k) · (|u| + |v| + (n + nk) · |⌃ |)).
Proof. Thm. 2 can be concluded from Lem. 9, Coro. 2, Lem. 11, and Lem. 12. Suppose
F = (M, {Au} is the corresponding periodic FDFA recognizing L. The number of states
in M is n and k is the number of the largest progress automaton in F .

Given a counterexample (u, v), the number of membership queries is at most |u| if
we refine the leading automaton and is at most |v| if we refine the progress automa-
ton. Therefore, the number of membership queries used in analyzing counterexample
is bounded by |u| + |v|. One can also use binary search to reduce the number of mem-
bership queries used by counterexample analysis to log(|u| + |v|). Moreover, when the
classification tree has been refined, we need to construct the corresponding M or AM(u)

again. Suppose the new added terminal node is labeled by p, the terminal node which
needs to refined is labelled by q and the experiment is e. We only need to compute the
successors of p and update the successors of the predecessors of q.

– Computing the successors of p is to calculate �(p, a) for every a 2 ⌃, which requires
|⌃ | · h membership queries where h is the height of the classification tree.

– Updating the successors of the predecessors of q is to calculate TE(s, e) for every
state label s and a 2 ⌃ such that currently we have �(s, a) = q, which requires at
most |⌃ | · m membership queries where m is the number of states in current M or
AM(u).

Since the height of the classification tree is at most m, thus the number of membership
queries needed for constructing the conjectured DFA is at most 2 · m · |⌃ |. It follows
that for the tree-based algorithm, the number of membership queries used in the coun-
terexample guided refinement is bounded by |u| + |v| + 2m · |⌃ |. We remark that in the
table-based algorithm, the number of membership queries used in the counterexample
guided refinement is bounded by |u| + |v| + m + |⌃ | · m + |⌃ |.

We give the complexity of the tree-based algorithm as follows.

– For periodic FDFA. During the learning procedure, when receiving a counterex-
ample for FDFA learner, the tree-based algorithm either adds a new state into the
leading automaton or into the corresponding progress automaton. Thus, the number
of the equivalence queries is bounded by n + nk since the number of states in the
target periodic FDFA is bounded by n + nk. In periodic FDFA, we have m n + k
since every time we either refine the leading automaton or a progress automaton.
Therefore, the number of membership queries needed for the algorithm is bounded
by (n + nk) · (|u| + |v| + 2(n + k) · |⌃ |) 2 O((n + nk) · (|u| + |v| + (n + k) · |⌃ |)) in the
worst case.

– For syntactic and recurrent FDFA, when receiving a counterexample for FDFA
learner, the tree-based algorithm will first decide whether to refine the leading au-
tomaton or the progress automaton. If it decides to refine the leading automaton,
we need to initialize all progress trees with a single node labelled by ✏ again, so the
number of states in the progress automata of the FDFA may decrease at that point,
otherwise it refines the progress automaton and the number of states in FDFA will
increase by one.
In the worst case, the learner will try to learn the progress automata as much as
possible. In other words, if current leading automaton has m states, the number
of states in every progress automaton is at most m · k according to Lem. 11 and
Lem. 12. When all progress trees cannot be refined any more, either the learning
task finishes or the FDFA teacher returns a counterexample to refine current leading
automaton. For the latter case, the number of states in the leading automaton will
increase by one, that is, m+1, and we need to redo the learning work for all progress
trees. The number of states in all progress automata in the new FDFA is bounded
by (m+ 1)2 · k. Therefore, the number of equivalence queries needed for tree-based
algorithm is bounded by (1+ 1 · 1 · k)+ (1+ 2 · 2 · k)+ · · · (1+ (n� 1) · (n� 1) · k)+
(1 + n · n · k) 2 O(n + n3k). Similarly, in syntactic and recurrent FDFAs, we have
that m n + nk since the number of states in a progress automaton is bounded by
nk. It follows that the number of membership queries needed for the algorithm is in
O((n + n3k) · (|u| + |v| + 2(n + nk) · |⌃ |)) 2 O((n + n3k) · (|u| + |v| + (n + nk) · |⌃ |)) in
the worst case.

⌅

Theorem 3 (Space Complexity). For all tree-based algorithms, the space required to
learn the leading automaton is in O(n). For learning periodic FDFA, the space required
for each progress automaton is in O(k), while for syntactic and recurrent FDFAs, the
space required is in O(nk). For all table-based algorithms, the space required to learn
the leading automaton is in O((n + n · |⌃ |) · n). For learning periodic FDFA, the space
required for each progress automaton is in O((k + k · |⌃ |) · k), while for syntactic and
recurrent FDFAs, the space required is in O((nk + nk · |⌃ |) · nk).

Proof. As we mentioned in Sec. 4, the FDFA learner can be viewed as a learner con-
sisting of many component DFA learners. For a component DFA learner, suppose the
number of the states in the target DFA is m, for table-based component DFA learner,
the size of the observation table is in O((m+m · |⌃ |) ·m) since there are m+m · |⌃ | rows
and at most m columns in the observation table in the worst case. In contrast, for the
tree-based component DFA learner, the number of nodes in the classification tree is in
O(m) since the number of terminal nodes in the classification tree is m and the number
of internal nodes is at most m � 1.

– For the periodic FDFA, the number of states in the FDFA will increase after each
refinement step. Thus, it is easy to conclude that the space required for the leading
automaton is in O(n) if we use tree-based learning algorithm and the space required
by the table-based algorithm is in O((n + n · |⌃ |) · n). Similarly, the space required
by tree-based learning algorithm to learn each progress automaton is in O(k), while
for table-based algorithm, the space required is in O((k + k · |⌃ |) · k).

– For the syntactic and recurrent FDFA. The learning procedure for the leading au-
tomaton is the same as periodic automaton. Thus the space required by table-based
and tree-based algorithm remain the same.
For learning progress automaton, the number of states in each progress automaton is
at most nk according to Lem. 11 and Lem. 12. Therefore, for table-based algorithm,
the space required is in O((nk + nk · |⌃ |) · nk). While for tree-based algorithm, the
space required to learn each progress automaton is in O(nk).

⌅

Proposition 8. In FDFA teacher, suppose n is the number of states in the leading au-
tomaton and k is the number of states in the largest progress automaton in the input
FDFA F and the returned counterexample uv! has a decomposition (u, v). Then

– the time and space complexity for building the BAs B and B are in O(n2k3) and
O(n2k2) respectively, and

– for the under approximation method, the time and space complexity for analyzing
the counterexample uv! are inO(n2k·(|v|(|v|+|u|)), while for the over approximation
method, the time and space complexity for analyzing the counterexample uv! are
in O(n2k2 · (|v|(|v| + |u|)) and in O(n2k(|v|(|v| + |u|)) respectively.

Proof. Suppose the FDFA teacher currently needs to answer the equivalence query for
FDFA F = (M, {Au}). Then the number of states in B (B) is in O(n+n2k3) (respectively,
O(n+n2k2)). In addition, the number of states in FAD1 andD2 are both inO(n+n2k) and
the number of states in Du$v is at most |v|(|v| + |u|) given that (u, v) is a decomposition
of the returned counterexample uv!, which can be applied to the under and the over
approximation except for case O3 in the over approximation. When we analyze the
spurious negative counterexample, the time and space complexity are in O(nk(n + nk) ·
(|v|(|v|+ |u|))) and O((n+nk) · (|v|(|v|+ |u|))) according to Lem. 5. Therefore, we complete
the proof. ⌅

Theorem 4 (Correctness and Termination). The BA learning algorithm based on the
under-approximation method can terminate and return a BA recognizing the unknown
!-regular language L in polynomial time. If the BA learning algorithm based on the
over-approximation method terminates without reporting an error, it returns a BA rec-
ognizing L.

Proof. If we use the under-approximation method to construct the Büchi automaton,
then the BA learning algorithm will need to first learn a canonical FDFA to get the final
Büchi automaton in the worst case. This theorem is justified by Lem. 2 and Lem. 3. ⌅

